Downloaded from https://www.cambridge.org/core. Florida State University Libraries, on 04 Feb 2019 at 19:38:35, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/psrm.2017.3

Political Science Research and Methods Vol 6, No. 2, 381-391 April 2018
© The European Political Science Association, 2017 doi:10.1017/psrm.2017.3

Unreliable Inferences About Unobserved Processes:
A Critique of Partial Observability Models*
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that enables researchers to estimate the distinct effects of a single explanatory variable

on two partially observable outcome variables. However, we show that when the
explanatory variable of interest influences both partially observable outcomes, the partial
observability model estimates are extremely sensitive to misspecification. We use Monte Carlo
simulations to show that, under partial observability, minor, unavoidable misspecification of the
functional form can lead to substantial large-sample bias, even though the same misspecifica-
tion leads to little or no bias under full observability.

M ethodologists and econometricians advocate the partial observability model as a tool

The data may not contain the answer. The combination of some data and an aching desire for an
answer does not ensure that a reasonable answer can be extracted from a given body of data
(Tukey 1986, 74).

s

ocial scientists often face situations, known as “partial observability,” where two (or

perhaps more) distinct processes lead to distinct binary outcomes that can only be

observed jointly. Braumoeller (2003) provides many examples of established literature
theorizing such relationships. For example, survey respondents might self-report turning out to
vote because (1) they actually voted or (2) they feel social pressure to do so. Similarly, two
states will only sign a treaty if both states want the treaty. In these examples, researchers might
be interested in modeling the decision to actually vote or the decision of a single state to want a
treaty. Econometricians and methodologists argue that researchers can use a partial observa-
bility model to parse out the effects of a single explanatory variable on each unobserved
outcome (Poirier 1980; Abowd and Farber 1982; Przeworski and Vreeland 2002; Xiang 2010;
Nieman 2015). This partial observability model is also referred to as the split population logit
(Beger et al. 2011) and the Boolean logit or probit (Braumoeller 2003).

Partial observability models inform the literatures on important processes and outcomes such
as civil wars (Nieman 2015), international conflict and trade (Xiang 2010), International
Monetary Fund (IMF) agreements (Knight and Santaella 1997; Przeworski and Vreeland 2000;
Przeworski and Vreeland 2002; Vreeland 2003; Stone 2008), union membership (Abowd and
Farber 1982), regulatory compliance (Feinstein 1990; Stafford 2002; Chen et al. 2006; Wang
2013), network formation (Comola and Fafchamps 2014), credit ratings (Boyes, Hoffman and
Low 1989), agricultural innovation (Dimara and Skuras 2003), health insurance ownership
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(Amir 2001), and employment discrimination (Heywood and Mohanty 1990; Logan 1996;
Mohanty 2002). Feinstein (1990) suggests the model’s usefulness for a wide range of policy
studies, and the model appears to hold out promise for investigating numerous other subjects,
including deterrence, treaty compliance, and attitudes and behaviors that are subject to social
desirability bias when measured via a survey report (Beger et al. 2011).

In spite of the optimistic application of the partial observability model, we argue that
researchers should view these estimates with skepticism. Seemingly innocuous and unavoidable
specification errors that lead to little or no large-sample bias under full observability can lead to
a substantial large-sample bias under partial observability. Using a simple example and two
simulation studies, we show that minor misspecification of the functional form can lead to large
asymptotic biases. Even incorrectly specifying the functional form, a choice that researchers
normally view as arbitrary and inconsequential, can lead to large biases with the partial
observability model.

Unfortunately, we have no simple solution to this problem. This is not a methodological
problem; the data simply do not contain enough information to reliably parse out the effects of a
single explanatory variable on each partially observed outcome variable without strong
assumptions about the functional form. Rather than offer a methodological fix, we instead
caution scholars to view these partial observability estimates with greater skepticism and urge
researchers to collect more complete data, directly observing the outcome of interest. For
example, we applaud the Cooperative Congressional Election Studies’ efforts to electronically
validate their self-reported voter turnout data.

A PARTIAL OBSERVABILITY LOGIT MODEL

Partial observability occurs when the researcher only observes a binary outcome of interest
dpmain jointly with another binary outcome doisance.. The researcher directly observes the binary
outcome Yqps, Which equals 1 if both dyp,in and dpyisance €qual 1 and O otherwise.”

To model the observed outcome y,s, we assume that dp.i, and dpyisance are independent
events so that Pr(yops) = Pr(diain) Pr(dhuisance)- Next, we assume a standard model relating a set
of covariates X =[1,w;,wo, ..., Wk, ,X1,X2, ..., %] t0 Pr(dm.n) and a set of covariates
Z= [17 WL, W2y ooy Wi, 521,225 +00y Zkz] to  Pr(dnuisance)» 80 that  Pr(dmain) = g_l(Xﬂ) and
Pr(duisance) = & (Zy). Note that the covariates w;forje(l, 2,..., k,} belong to both X and Z.
This is crucial—our critique focuses on the situation in which the researcher wishes to parse out
the distinct effects of one or more explanatory variables on both unobservable outcome vari-
ables. The researcher’s theory rarely offers a compelling rationale for a particular link function
g, making the choice essentially arbitrary (King 1998, 100; Berry, DeMeritt and Esarey 2010).
In our partial observability model, we let g be the logit function, but other standard choices
include probit, cloglog, and cauchit. Using this form, it is straightforward to find the log-
likelihood function for # and y, although the maximization is not trivial. We assume that the
researcher uses the estimates of f and y to calculate some quantity of interest (e.g., first
difference). As a comparison, we also consider a full observability logit model (i.e., the usual
logit model), in which the researcher observes d,,,;, and uses the model Pr(d, i) = logit_l(X[})
to estimate the quantity of interest.

! For clarity, we imagine a situation where one outcome is of interest and the other is nuisance. However, our
ideas generalize to two outcomes of interest.

2 An alternative partial observability model assumes y,p,s equals 1 if either dain OF dpyisance €qual 1. Our
conclusions do not depend on this choice.
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A MOTIVATING EXAMPLE

To illustrate the potential bias with a simple example, suppose the researcher wants to estimate
p and y in the stylized model:

Pr(doain ) = logit ™! (Bx),
Pr(dnuisance) = lOgit_l (7X—Z),

Pr (y) = Pr(dmain ) Pr(dnuisance ) 9

where y,p represents the observed binary outcome, x and z two binary explanatory variables,
and S and y parameters to be estimated. Suppose further that (g, y) = (-1, 1) or (5, 7) = (1, -1)
so that the researcher knows the absolute value of f and y is 1, but is not sure which parameter is
negative.

Because x and z are binary, there are four conditions, and we can easily compute the expected
proportions under each for both sets of possible parameters. Table 1 shows these proportions,
where & represents the logit™ function for compactness. The only difference in the expected
proportion occurs when x = 1 and z = 1, where (3, y) = (=1, 1) produces an expected pro-
portion of 0.13 and (f, y) = (1, —1) produces an expected proportion of 0.09.

This raises the question: How much would we need to alter the logit link function so that we
obtain Panel A of Table 1 with parameters (5, y) = {1, —1}? The answer is “not much.”

Our goal is to replace the function logit™" with a new function 4~' to obtain Panel A of
Table 1 with parameters (5, ) = (1, —1). The only time we use logit™'(-2) in the calculation is
for the bottom-right cell. In that case, let h_l(x) = logit_l(x) for xec{ -1, 0, 1}. This ensures
that all but the bottom-right cell remains unchanged. Then we require that

' (=2)h (1) =0.13,

h'(—=2)logit (1) =0.13,

1
(2=
logit™" (1)

0.13

h(=2)=

(=2) 0.73’

h~'(—2) =0.18 (as opposed to logit ' (—2) =0.12).

Figure 1 compares the functions logit™' and 4~', which are similar, yet lead to exactly opposite
inferences about the effects of x on dp., and dygisance- If the researcher obtains a large set of

TABLE 1 Expected Proportion Under the Two Possible Parameter Combinations of the
Stylized Partial Observability Model

Ar(Bp=C-1L1 B: @ n=01,-1)

z=0 z=1 z=0 z=1
x=0 8(0)8(0) = 0.25 8(0)6(-1) = 0.13 x=0 8(0)8(0) = 0.25 8(0)5(-1) = 0.13
x=1 8(=1)8(1) = 0.20 8(-1)8(0) = 0.13 x=1 8(1)6(-1) = 0.20 8(1)6(=2) = 0.09
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Fig. 1. The link functions logit™' and h™' that lead to exactly opposite inferences in the stylized partial

observability model

data with proportions identical to Panel A of Table 1, then her conclusion about the effects of
X ON dppain and dpyisance depends on her assumption about the link function. If she assumes
the logit link function, then she concludes that x has a large, negative effect on d,,. If she
assumes the link function #, then she concludes that x has a large, positive effect on dy,;,. This
example clearly highlights how minor errors in model specification can lead to large bias.
To show the potential for bias in a broader collection of situations, we now turn to two
simulation studies.

SIMULATION STUDIES

We use two simulation studies to support our claim that partial observability models are highly
sensitive to seemingly innocuous specification errors. In the first study, we evaluate the bias in
the partial observability logit model estimates as the link function g of the true data-generating
process (DGP) varies. We view this as a highly conservative test of our claim, but find that
misspecifying the link function can lead to large biases. In the second study, we consider more
realistic, but still conservative misspecifications of the functional form. Berry, DeMeritt and
Esarey (2015) observe that few social science theories offer more precision than a simple
monotonic relationship between an explanatory variable and the probability of an event.
Motivated by their observation, we evaluate the performance of the partial observability logit
model for a variety of monotonic DGPs. The simulations clearly show that (1) neither type of
misspecification introduces much bias into the estimate under full observability and (2) both
types of misspecification can introduce large bias into the estimate under partial observability,
including sign errors.

Simulation Study 1: Wrong Link Function

Many researchers view the choice of link function in a model of a binary outcome as an
arbitrary, unimportant choice. Berry, DeMeritt and Esarey (2015) summarize this idea:

In the typical study using binary logit or probit, the theory introduced is not sufficiently specific to
imply that logit, probit, or any other functional form is a good fit to the hypothesized DGP.
Instead, logit or probit is chosen from among the countless possible functional forms for a model
simply because logit and probit have come to be viewed as “default” estimators for a binary
dependent variable model—making them convenient estimation choices.
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We endorse and echo the authors’ key point: in the social sciences, researchers rarely have a
strong theoretical justification for choosing one functional form over another.

Given that researchers seldom have a compelling reason to prefer a logit model over a probit
model, a cloglog model, or a cauchit model, we would find it especially troubling if the ability
of the partial observability model to recover the quantity of interest depends on the researcher
choosing the proper link function. Our simulations show exactly this—if the researcher chooses
the wrong link function (e.g., uses a partial observability logit model for a cauchit DGP), then
the large-sample estimates can have substantial bias.

To assess the large-sample bias of the partial observability model we simulate 500 large data
sets for each of our DGPs (i.e., 100 million observations for each unique combination of the
values for each explanatory variable). Across each data set, we randomly vary k,, (the number of
variables explaining both d,.i, and dpyisance), k» (the number of variables explaining only dain),
k. (the number of variables explaining only dyisance)> £ (the coefficients in the model of d,4;n),
and y (the coefficients in the model of d,yisance)- The parameters are drawn from the following
distributions:

k,—1 ~ Poisson(0.5)

(0.5),
k, ~ Poisson(1.5),
k, ~ Poisson(1.5),
p* ~ uniform(—1, 1),
y* ~ uniform(—1, 1).

We also randomly vary the type of each explanatory variable, either binary or continuous, so
that each variable is binary with probability 0.5. For computational ease, continuous variables
take on values 0.0, 0.2, 0.4, 0.6, 0.8, or 1. For each random set of simulation parameters, we
simulate a large data set using logit, probit, cloglog, and cauchit DGPs. For each DGP, we
rescale the coefficients #~ and y* so that the true first differences are approximately equal across
DGPs. For each data set, we use the partial observability logit model to estimate the
first difference as the key explanatory variable w; varies from its minimum to its maximum
(i.e., 0-1). First section of the Online Appendix summarizes the details of the algorithm.

Figure 2 shows the large-sample estimates of the first difference. The left-hand column shows
the relationship between the estimated effect and true effect under full observability, where
misspecifying the link function has almost no effect on the inferences. The largest biases under
full observability occur for the cauchit DGP, where the average absolute bias is <0.01. The
average absolute true effect is about 0.1, so the average absolute bias is relatively small. Most
importantly, though, the estimate almost always falls close to the true value regardless of the
DGP. For the worst-case cauchit DGP, the 95th percentile of the absolute bias is about 0.04 and
the maximum is 0.08. The correlations between the estimated effect and the true effect for a
cauchit DGP is 0.99. We would expect any biases to be minor; the cauchit link function is
nearly indistinguishable from the logit link function and there is almost never a compelling
theoretical reason to prefer one over the other.

The results under partial observability, though, tell a different story—the bias can be much
larger. For the cauchit DGP, the average absolute bias is about 0.07 when wy is continuous and
about 0.20 when w; is binary—about 7 and 20 times larger under partial observability than under
full observability, respectively. Under partial observability, the correlation between the estimated
effect and the true effects drops to 0.69 when w, is continuous and to 0.32 when w is binary.
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Fig. 2. The large-sample estimates of the first difference as the true first difference varies

Note: The left column shows the estimates under full observability (i.e., usual logit model) and the right
column shows the estimates under partial observability. The top row shows the estimates when the link
function is specified correctly as logit. The remaining rows show the estimates when the link function is not
specified correctly (i.e., specified as logit when the data-generating process is probit, cloglog, and cauchit).

And remember that standard errors do not reflect this large-sample bias and that the bias does not
shrink as the sample size increases. This performance differential does not occur because the
partial observability model requires more information to estimate the parameters; it occurs
because the partial observability model is highly sensitive to misspecification.

Unlike the full observability model, the partial observability model does not guarantee an
estimate close to the true value. For the cauchit DGP, the 95th percentile for the average
absolute bias is about 0.17 and the maximum is about 0.30 when w; is continuous. When w; is
binary, the 95th percentile is 0.83 and the maximum is 1.12. Though the researcher has made
only a small specification error, this small error produces a moderate-to-large bias on average
and an enormous bias on occasion. Perhaps most informatively, for the cauchit DGP, the partial
observability logit model produces sign errors in 24 percent of the simulations when wy is
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continuous and in 31 percent of the simulations when w; is binary. That is, when using a partial
observability logit model to estimate a cauchit DGP, not only does the estimate converge to the
wrong value (i.e., is inconsistent), it often converges to a value with the wrong sign! In contrast,
the full observability logit model does not produce a single sign error in our simulations,
regardless of the DGP.

While the cauchit DGP acts as the worst-case scenario for the partial observability logit
model, the biases that emerge for the probit DGP are especially telling. The conventional
wisdom suggests that the choice between a logit and probit model is inconsequential. Indeed,
King (1998, 100) notes in passing that the two link functions “produce almost identical
inferences in practical social science problems.” This claim holds in the context of full
observability (where King makes the claim), but the partial observability logit model estimates
can have substantial bias under a probit DGP. For example, the average absolute bias in
the estimates of the partial observability logit model for a probit DGP is about 0.03 for both
a continuous and a binary w;, which is about three times the worst-case scenario under
full observability. Perhaps more importantly, the partial observability model has a much
higher likelihood of substantial large-sample bias than the full observability model. The
95th percentile of the absolute bias is 0.12 and the maximum is 0.35 when w; is continuous.
When w; is binary, the 95th percentile is 0.12 and the maximum is 0.55. About 4 percent of the
simulations produce a sign error. While this potential for bias might be small enough or rare
enough to ignore, these results highlight the bias that even minor errors in the functional form
can produce.

Lastly, notice that substantial large-sample bias does not only occur among models with one
or two identifying variables. For the probit DGP, increasing the number of identifying variables
(ny+n,) from one to four shrinks the 95th percentile of the absolute bias from about 0.15 to
about 0.10. For the cloglog DGP, this same change shrinks the 95th percentile from 0.21 to
0.15. For the cauchit DGP, the 95th percentile shrinks from 0.73 to 0.69. Even with several
identifying variables, the potential for bias remains quite large.

Whereas the full observability logit model can estimate the first difference accurately whether
the true DGP is logit, probit, cloglog, or cauchit, the partial observability logit model performs
noticeably worse for the probit, cloglog, and cauchit DGPs. In particular, a functional form
mismatch leads to moderate-to-large bias on average and dramatically raises the likelihood of an
enormous bias, including sign errors. But we view this first study only as a heuristic to illustrate
the extreme sensitivity of the partial observability model. In our second simulation, we turn to a
more realistic scenario with more general, monotonic DGPs.

Simulation Study 2: A Monotonic Relationship

Our second simulation study mirrors that of Berry, DeMeritt and Esarey (2015). In these
simulations, we assume that the researcher uses the partial observability logit model to estimate
a first difference when the DGP is actually some monotonic relationship among the explanatory
variables and the probability of an event, so that

Pr(dmain) = p(W) ’
Pr(dnuisance) = CI(W7 Z)7

Pr(yobs) = Pr(dmain)Pr(dnuisance)a

where p and g are monotonic functions of x and x and z, respectively.
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In our view, even the strongest social science theory will not specify the exact functional
form relating the explanatory variables to the unobserved outcomes. However, a good theory
might specify a monotonic relationship between the explanatory variables and the probability of
an event.

In this simulation, the relationships are monotonic and the researcher includes the variables in
the appropriate equations, so the misspecification, while always present, remains slight. We
view this study as a more realistic, but still conservative evaluation of the partial observability
model. While the deviation from the typical link functions (logit, probit, cloglog, cauchit, etc.)
can be quite large in this simulation, two features work in favor of the partial observability
model. First, we place the variables w and z in the correct equations. In applied research, the
researcher must usually make these choices guided only by relatively weak theory. Second, we
allow the effects of the identifying variable z to be quite large. In applied work, the researcher
might rely on one or more variables that have relatively small effects.

Indeed, this strikes us as a realistic, but best-case scenario for social science research. Fol-
lowing Berry, DeMeritt and Esarey (2015), we simulate a pool of 2000 DGPs that meet the
monotonicity condition, where each true DGP can be represented by the nonlinear, interactive
equations

2
Pr(dmain) = ﬂcons +ﬁww +ﬂw2W )
2 2
Pr(dnuisance) =Yeons TYWWT TV 2tV 2W™ +Y 227+, WZ,

Pr(y) = Pr(dmain)Pr(dnuisunce)-

To choose the coefficients, f and y are drawn from a uniform(—1, 1) distribution. Values that do
not meet the monotonicity condition are discarded.

As before, we simulate a large data set (i.e., 100 million observations) for every possible
combination of covariate values for each DGP. We use this data set to estimate the full and
partial observability logit models. Finally, we compare these large-sample estimates of the
quantity of interest to the true value. As before, we focus on the ability of the partial obser-
vability model to recover the change in the probability of d,,,i, as w moves from its minimum to
its maximum (0, 1). Second section of the Online Appendix summarizes the details of the
algorithm.

Figure 3 shows the results. The left-hand column shows the full observability logit model
estimates of the first difference. These estimates are extremely accurate when w is binary. This
occurs because the logit model can perfectly represent the probability of an event, regardless of
the “functional form” when the single explanatory variable w is binary. This is not the case for
the continuous w, though. In spite of the fact that the full observability model might only
roughly approximate p(w), the bottom left-hand panel of Figure 3 shows that the full obser-
vability model can estimate the effect of w on Pr(d,,,;,) extremely well.

Though the functional form misspecification has almost no influence on the ability of the full
observability logit model to estimate the effect of interest, the same misspecification causes
substantial bias in the partial observability estimates. For a continuous w, the average absolute
bias is about 0.19. The 95th percentile is 0.54, and the maximum bias in our sample is 1.17. For
a binary w, the average absolute bias is 0.28, the 95th percentile is 0.85, and the maximum is
1.15. The large-sample absolute bias is >0.1 in 65 percent of the simulations, >0.3 in 27 percent
of the simulations, and >0.5 in 12 percent of the simulations. To put this in perspective, many
effects of interest to political scientists are <0.1.
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Fig. 3. The large-sample estimates of the first difference as the true first difference varies

Note: The left column shows the estimates under full observability (i.e., usual logit model) and the right
column shows the estimates under partial observability. The top row shows the estimates when the key
explanatory variable is binary and the bottom row shows the estimates when the key explanatory variable is
continuous.

Sign errors are also a substantial problem for the monotonic DGP. When w is binary, 19
percent of the simulations produce a large-sample sign error. When w is continuous, this only
shrinks to about 11 percent. In applied settings, not only do researchers need to worry about
sampling error, they need to worry that the model, even with negligible sampling error, may
converge to an estimate with the wrong sign.

One might suspect that the magnitude of the bias depends on the magnitude of the effect of
the identifying variable. As the magnitude of the effect of the identifying variable increases, the
potential for bias does tend to decrease, but it shrinks rather slowly. The 95th percentile of the
absolute bias is 1.00 when the effect of z is 0.1. If z has a much larger effect of 0.5, then the 95th
percentile of the absolute bias only drops to 0.58.

CONCLUSION

We highlight an under-appreciated but critical characteristic of partial observability models—
they are quite sensitive to seemingly innocuous specification errors. Even small errors in the
functional form can lead to a substantial bias in large samples, including sign errors.

Meng and Schmidt (1985) counseled economists early on regarding some of the costs of partial
observability, arguing that standard errors are much larger when the outcome of interest is only
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partially observed. They write, “we would not be surprised to find, in a typical application, z-
ratios to be from two to four times as large under full observability as under partial observability”
(Meng and Schmidt 1985, 83). Yet by design, standard errors only reflect the uncertainty due to
sampling error. Other sources of error, such as measurement error, missing data, and specification
error create additional uncertainty. In the case of full observability, our simulations show that the
functional form has a negligible impact on the large-sample estimates. But in the case of partial
observability, uncertainty about the functional form should generate suspicion about the esti-
mates. The bias introduced from specification error of the partial observability model can be quite
large, is rarely negligible, and is not captured in the standard errors.

What about the possibility of model specification tests to determine the severity of the
misspecification? We are not optimistic about this possibility. The motivating example shows
that two models can fit the observed data exactly and still provide opposite inferences. In
general, researchers could use a test to determine whether the partial observability model offers
a good model of Pr(y,y,). But researchers cannot evaluate the quality of the models of Pr(d i)
and Pr(dyuisance) because these variables are unobserved. A model might predict the observed
data quite well, but offer terrible predictions for the unobserved data. Thus, specification tests
cannot resolve the issue when the researcher is interested in explaining dpain-

Recent applications are relatively sanguine about employing the partial observability model.
For example, Przeworski and Vreeland (2002) (see also Przeworski and Vreeland 2000;
Vreeland 2003; Stone 2008) are interested in how surplus in a nation’s budget affects both the
IMF’s and the national government’s decisions to enter an agreement. They find that, as a
budget surplus increases, a government becomes less likely to enter an IMF agreement, but the
IMF becomes more likely to enter an agreement. Interestingly, and consistent with our claim,
Stone (2008) uses data from a later time period and reports an opposite effect of the budget
surplus on a government’s decision to participate in an agreement. In spite of these and other
optimistic applications of the partial observability model, our analysis suggests that skepticism
is in order. Indeed, our simulations show that relatively minor and unavoidable model speci-
fication errors can lead to a substantial large-sample bias in the estimates. In our view, no easy
methodological fix exists. Instead, we encourage scholars to view partial observability estimates
with skepticism and encourage researchers to collect more complete data, directly observing the
outcome of interest.
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