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Abstract

Recent work emphasizes the importance of statistical power in the social sciences
and shows that power tends to be very low. In this paper, I offer simple rules to
compute power for balanced, between-subjects designs, including new advice for
using pilot data to automate the power analysis. In many cases, these rules are
sufficient for a complete, compact, and compelling power analysis for treatment
effects and interactions. Most importantly, these rules help researchers develop a
sharp intuition about statistical power, lower the barrier to entry for researchers
new to thinking carefully about statistical power, and help researchers design
powerful, informative experiments.
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Introduction

Experiments continue to grow in political science (Druckman and Green 2021), and designing

an experiment requires us to either select an appropriate sample size or evaluate whether a

given sample size is sufficient for our goals.1 Statistical power, or the chance of rejecting the

null hypothesis for a given treatment effect, is a common, powerful way to select or evaluate

a sample size. The consequences of low power are increasingly understood: low power can

lead to wildly overestimated treatment effects (Gelman and Carlin 2014) and ambiguous

results that are difficult to publish (e.g., Alrababa’h et al. 2023). Nonetheless, Arel-Bundock

et al. (2022) argue that only about 10% statistical tests in political science have at least 80%

power. And political science is hardly unusual (Cohen 1962; Button et al. 2013; Ioannidis,

Stanley, and Doucouliagos 2017; Stanley, Carter, and Doucouliagos 2018; Yang et al. 2023;

Stommes, Aronow, and Sävje 2023). Underscoring their important findings, Arel-Bundock

et al. (2022) emphasize: “our research community must address the problems of low power

and selection on significance with institutional, methodological, and theoretical remedies.”

One apparent problem is that while political scientists understand estimation and inference

for experimental data very well (e.g., least squares regression with robust standard errors),

political scientists are less comfortable thinking about statistical power prior to data collection.

This apparent discomfort is not without reason. Power analysis requires specialized software

or tedious simulation. Most specialized software, such as G*Power (Faul et al. 2007, 2009), is

1For example, the Journal of Politics guidelines for registered reports notes that “a detailed justification
of the planned sample size is essential” (accessed May 2, 2024, persistent link: https://archive.md/g7YQ3).
The Journal of Experimental Political Science requires authors to “explain how the sample size was determined
and note statistical power” (accessed May 2, 2024, persistent link: https://archive.md/7nLKg). Time-
sharing Experiments for the Social Sciences (TESS) notes that power analysis is “encouraged” (accessed
May 11, 2024, persistent link: https://archive.md/Xc0UY). The Civic Health and Institutions Project, a
50 States Survey, (CHIP50) notes that power analysis is “strongly encouraged” (accessed May 11, 2024,
persistent link: https://archive.md/SLpgW). The National Institutes of Health (NIH) provides several
examples to “demonstrate rigor” and all examples include a discussion of statistical power (accessed May 11,
2024, persistent link: https://archive.md/Jh9Lp). The popular OSF pre-registration template asks users
to provide an explicit sample size rationale, which could include a power analysis (Bowman et al. 2020).
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designed primarily for psychologists. The language (e.g., Cohen’s d) and style of analysis

(e.g., ANCOVA) can make the software awkward for political scientists (though of course not

insurmountable).2 Most importantly, political scientists tend to focus on treatment effects on

the scale of the outcome (e.g., King, Tomz, and Wittenberg 2000), while psychologists are

more comfortable with standardized effect sizes.3 And while psychologists rely on a range of

procedures to test hypotheses, political scientists typically use least squares regression with

robust standard errors. In political science, recent conceptual work and statistical software

(Blair et al. 2019; Blair, Coppock, and Humphreys 2023) make complex simulations to

comprehensively evaluate research designs more accessible, but simulation to obtain statistical

power remains challenging compared to analyzing experimental data. Political scientists lack

a gateway between the simple, robust tools of inference using experimental data and the

complex, tedious tools that allow complete and careful evaluations of research designs. This

paper can help create the link.

In this paper, I offer several simple rules for assessing statistical power. These rules do not

require special software or simulation and are motivated from statistical analyses common in

political science. I tightly connect the rules for statistical power to the logic of estimation and

inference for experimental data in political science (least squares regression, robust standard

errors, and confidence intervals). There is tremendous value in simple, conceptual rules of

thumb—the kind of rules that allow us to predict the statistical power of an experiment

with paper, a pencil, and (perhaps also) a pocket calculator.4 While specialized software

2For example,the power resources that the Journal of Politics provides include links to several resources
for planning sample size in experiments, but many of their resources are directed primarily at psychologists.

3Lakens (2022) offers a careful and thorough discussion of sample size justifications for an audience of
psychologists, but (appropriately) uses terms common in psychology. For example, Lakens centers much of
his discussion around Cohen’s d, standardized effect size used often in psychology but less often in political
science.

4Paper-and-pencil calculations are valuable, for two reasons. First, predicting statistical power involves
some guesswork. Specialized software and simulations bring an air of exactness that does not match the
spirit of the task. With paper-and-pencil calculations, it seems easier to remember that task is to make an
informed guess using clear assumptions. Second, paper-and-pencil work constantly reminds us how inputs
relate to outputs. Since we are designing experiments and have freedom to make different design choices, it
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and complex simulations are helpful (and essential in some cases), simple rules have several

benefits: (1) simple rules can make statistical power accessible, rather than seem like a

mystical quantity; (2) simple rules allow us to reason fluently about design choices; (3) simple

rules can reduce the chance of making big errors by giving us a ballpark starting point even if

we ultimately rely on a more sophisticated approach; and (4), in many cases, simple rules are

sufficient to justify a sample size and simulations and specialized software are unnecessary.

In this paper, I walk through several rules to predict the statistical power of an balanced,

between-subjects design, including new advice about pilot data. For these balanced, between-

subjects designs, the rules are sufficient to demonstrate adequate power for treatment effects

and interactions. I explain the intuition of each rule, describe how we can use the rule to plan

or evaluate a study, and give examples. The rules are often sufficient to predict the power for

studies of treatment effects and interactions using features of a reference population, existing

studies, and/or pilot data. Indeed, it is common to collect pilot data in political science (e.g.,

to conduct a careful manipulation check), and I show how we can use these pilot data to

automate the power analysis.

Review: The Estimation and Inference Framework

Throughout this discussion, I assume that we use ordinary least squares and robust standard

errors to estimate the treatment effect. I assume size-0.05, one-sided tests of directional

hypotheses evaluated in practice using 90% confidence intervals. (A later section describes

how researchers can modify the rules for 95% confidence intervals, if they prefer.) To make

the discussion more natural, I borrow the language of survey experiments and describe the

experimental units as “respondents,” but the logic generalizes to other types of units (e.g.,

villages).

can be helpful to be constantly reminded of the relationship between inputs and outputs.
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Formally, I assume potential outcomes Yi(1) if assigned to treatment and Yi(0) if assigned

to control for respondent i of N . An experiment might use more than two conditions, but for

the sake of the discussion below, I focus on the statistical power of a comparison of just two

of these conditions, which I call treatment and control.5 For these two conditions, we want to

make inferences about the average treatment effect τ = 1
N

∑N
i=1 Yi(1)− 1

N

∑N
i=1 Yi(0) (which

I refer to as a “treatment effect” throughout).

To make inferences about τ , we randomly assign n1 respondents to treatment and n0

respondents to control, where N = n1 + n0.
6 We create an indictor variable Di that equals 1

if the respondent is assigned to treatment and 0 if the respondent is assigned to control. Then

we create the observed outcome Yi = Yi (Di) by assigning Yi the potential outcome under

treatment if Di = 1 and the potential outcome under control if Di = 0. Then we estimate

the treatment effect using τ̂ = 1
n1

∑N
i=1Di · Y i − 1

n0

∑N
i=1 (1−Di) · Y i, which we compute in

practice using least squares estimates of the model Yi = α+ τ ·Di + ϵi. In some cases, we

might increase the precision of the estimates by including variables measured pre-treatment

as control variables in the regression model.

To estimate the sampling variance of τ̂ , we use Neyman’s (1990) conservative variance

estimator V̂ ar (τ̂) =
s21
n1

+
s20
n0
, where s21 and s20 represent the sample variance in the treatment

and the control group, respectively. Then we can estimate the standard error of τ̂ with

ŜE τ̂ =

√
V̂ ar (τ̂).

In practice, we use a HC2 heteroskedasticity-robust variance estimator (or a closely

related variant), which Samii and Aronow (2012) show is equivalent to Neyman’s estimator.

For testing, Li and Ding (2017) provide several additional (seemingly innocuous) regu-

5In many experiments, there will be multiple comparisons of interest. In this cases, we need to compute
the statistical power for each test separately. As the Journal of Politics guidelines note: “power must be
calculated for each test individually” (accessed May 3, 2024; persistent link: https://archive.md/g7YQ3).

6Note that N represents the total number of the respondents in the comparison, while ni represents the
number of respondents in condition i. Below, I assume equal numbers of respondents in each condition, so I
let n represent the number of respondents per condition, which is a convenient quantity when thinking about
experimental design and statistical power.
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larity conditions such that a finite-sample version of the central limit theorem holds and[
τ̂ − Φ−1

std

(
1− α

2

)
· ŜE τ̂ , τ̂ + Φ−1

std

(
1− α

2

)
· ŜE τ̂

]
is an asymptotically conservative

(
1− α

2

)
·

100% confidence interval. We can use the 90% confidence interval =
[
τ̂ − 1.64 · ŜE τ̂ , τ̂ + 1.64 · ŜE τ̂

]
to conduct size-0.05 tests of directional hypotheses by rejecting a null hypotheses if and

only if all values in the 90% confidence interval are consistent with the research hypothesis

(Rainey 2014; McCaskey and Rainey 2015).

Rules 1 and 2: What is Statistical Power?

In a designed experiment, we usually have a theoretically motivated research hypothesis that

we would like to test. This research hypothesis implies a null hypothesis that we hope to

reject. For simplicity, I assume throughout much of this paper that we hypothesize a positive

treatment effect so that HR : τ > 0. The extension to a negative treatment effect is obvious.

Imagine that we repeatedly re-randomize to treatment and control and compute τ̂ for each

repetition. Then τ̂ will vary across these repeated experiments. We refer to the distribution

of τ̂ across these hypothetical repeated experiments as the sampling distribution of τ̂ . This

sampling distribution is typically centered over the treatment effect (i.e., τ̂ is unbiased or

nearly so). Importantly, the standard deviation of the sampling distribution of τ̂ is called the

standard error and ŜE τ̂ is usually a precise estimator of the standard error.

If the research hypothesis HR : τ > 0 is correct, then the sampling distribution of τ̂

lies mostly to the right of zero. However, we will only claim that τ > 0 if the entire 90%

confidence interval is larger than zero, or, equivalently, if τ̂ − 1.64 · ŜE τ̂ > 0. This means that

we must design our experiment so that the sampling distribution falls relatively far from zero.

We say that the statistical power of an experiment is the chance of rejecting the null

hypothesis for a particular treatment effect τ . For example, we say that an experiment has

“80% power to detect a treatment effect of ” if τ̂ − 1.64 · ŜE τ̂ > 0 in 80% of repeated
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experiments. Similarly, we say that the experiment has “95% power to detect a treatment

effect of ” if the τ̂ − 1.64ŜE τ̂ > 0 in 95% of repeated experiments. By convention, 80%

power is the minimal standard for “adequate” statistical power (Cohen 1988), but others

recommend higher power, such as 95%.7

First, how can we compute statistical power? It turns out that statistical power is

determined by the treatment effect and the standard error of the estimate. To compute

the statistical power of an experiment, we must make assumptions or “informed guesses”

about certain quantities. I denote these assumed values with tilde. For example, I denote the

assumed treatment effect as τ̃ .8 This just means “the treatment effect we are assuming for

the sake of computing statistical power.”

How can we compute the statistical power of an experiment? An intuitive approach

uses the construction of the 90% confidence interval. Recall that we will reject the null

hypothesis if the lower-bound of the 90% confidence interval falls above zero. The arms of

the 90% confidence interval are about 1.64 standard errors wide.9 This means that we will

reject the null hypothesis if the estimate of the treatment effect is larger than 1.64 standard

errors. Thus, the power of the study is the percent of the sampling distribution that is larger

than 1.64 standard errors. Recall that the sampling distribution is approximately normally

distributed and centered over the treatment effect τ with standard deviation equal to the

standard error of the estimate of τ . Thus, computing the power is simply computing the

percent of the sampling distribution above 1.64 · SE.

7For example, the Journal of Politics “a power of at least 0.90, ideally 0.95, to detect anticipated/relevant
effect sizes” for registered reports (accessed May 3, 2024; persistent link: https://archive.md/g7YQ3).
Nature Human Behavior requires that “the a priori power must be 0.95 or higher for all proposed hypothesis
tests” for registered reports (accessed May 13, 2024; persistent link: https://archive.md/xpGdj).

8I use three different τs: the actual treatment effect τ , the treatment effect assumed for the sake of
computing power τ̃ , and the estimated treatment effect τ̂ . I read the tilde notation as “assumed to compute
power.” For example, I read τ̃ as “the treatment effect assumed to compute power.” The tilde notation also
means “Wait!—think about this carefully, it is an assumption requiring judgment.”

9I write “about” 1.64 standard errors because in practice we use the estimated standard error, not
the actual standard error. However, the estimated standard error is sufficiently precise to treat the two
interchangeably in this context.
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Rule 1 (Power; Most Intuitively): Power equals 1 − Φ(1.64 · SE;µ = τ, σ = SE),

where Φ(z;µ, σ) is the normal CDF, SE is the standard error of the estimated treatment

effect, and τ is the treatment effect.

See Gerber and Green (2012, 92) for a similar presentation.

Dividing through by the standard error and then subtracting τ
SE

, we see that power

also equals 1− Φ
(
1.64− τ

SE
;µ = 0, σ = 1

)
; the values of Φ (z;µ = 0, σ = 1) are provided in

common z tables, where z = 1.64− τ
SE

. This allows us to compute power using the standard

normal CDF.

Rule 2 (Power; From a z Table): Power equals 1− Φstd

(
1.64− τ

SE

)
, where Φstd(z) is

the standard normal CDF (as found in a standard z table), SE is the standard error of

the estimated treatment effect, and τ is the treatment effect.

Rule 2 allows us to connect statistical power to the familiar z table in the appendices of many

statistics textbooks or the pnorm() function in R. But, more importantly, it drives home an

important intuition—power is determined by the key ratio τ
SE

. To estimate power, we must

make an informed assumption about the effect of interest and a good prediction of standard

error of the estimate. Further, when we consider changes to the experimental design and

the consequences for statistical power, it can be helpful to think about the numerator or the

denominator of the key ratio τ
SE

: How do you make the effect as large as possible? And how

do you make the estimate as precise as possible?

What Treatment Effect Should I Assume?

To compute statistical power, we must make an informed assumption about the treatment

effect. Statements about statistical power always have the form: “the experiment has %

power to detect a treatment effect of .” But obviously, we do not know the treatment
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effect with any precision, else we would not need to run the experiment. Thus, we must

assume. Lakens (2022, 6) writes: “The goal of an a-priori power analysis is to achieve

sufficient power, given a specific assumption of the effect size a researcher wants to detect”

[emphasis mine].

For any given experiment, there are three treatment effects worth thinking about: (1) the

“best guess” of the effect, (2) the smallest plausible effect, and (3) the smallest substantively

meaningful effect. By default, we should focus on the statistical power for the smallest

substantively meaningful effect.10 However, when the smallest plausible effect is much

larger than the smallest effect of substantive interest, we might compute power for the

smallest plausible effect.11 Importantly, we must use our judgment: judgment about the

substantive importance of effects, judgment about the empirical plausibility of various effects,

and judgment about the relevance of each to the argument. As Kirk (1996, 755) notes,

“researchers have an obligation to make this kind of judgment.”12

As a crude approximation, we might feel tempted to use a rule of thumb such as declaring

a 0.15 SD increase in the outcome is a “small” effect (e.g., Lovakov and Agadullina 2021).

While rules of thumb can be useful as a starting point, they are only a first approximation—

rules of thumb about “small” effects do not account for the question under study, so we must

supplement these rules of thumb with additional arguments. Lakens, Scheel, and Isager (2018,

see esp. pp. 261-263) and Lakens (2022, see esp. pp. 10-13) offer helpful further discussion

10Rainey (2014) refers this this threshold as the “smallest substantively meaningful effect.” Others refers
to the same concept as the “smallest effect size of interest” (SESOI) (Lakens, Scheel, and Isager 2018),
“minimum effect of interest” (MEI), and “minimum meaningful effect” (MME).

11If the researchers are confident that a treatment effect is much larger than the smallest substantively
meaningful effect, then they might decide it is wasteful to power their experiment for a treatment effect that
is much smaller than the smallest plausible effect. This strikes me as a reasonable argument.

12In full, Kirk (1996, 755) writes:

Researchers have an obligation to make this kind of judgment. No one is in a better position
than the researcher who collected and analyzed the data to decide whether or not the results
are trivial. It is a curious anomaly that researchers are trusted to make a variety of complex
decisions in the design and execution of an experiment, but in the name of objectivity, they are
not expected or even encouraged to decide whether data are practically significant.
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of how we might choose an treatment effect of interest.

Importantly, we should not use pilot data to estimate the treatment effect for the purpose

of a power analysis (Leon, Davis, and Kraemer 2011; Albers and Lakens 2018). A pilot

data set is too small to estimate the treatment effect with sufficient accuracy—the estimate

from the pilot data might even have the wrong sign! (Though see Perugini, Gallucci, and

Costantini (2014) for a conserative approach and Lakens (2014) on sequential analysis; and

later in this paper, I offer some new guidance for using pilot data to automate the power

analysis.)

Making a thoughtful assumption about the treatment effect is perhaps the most challenging

component of a power analysis. We are doing a study to learn about a treatment effect, so

it feels uncomfortable to make declarations about the effect beforehand. It feels similarly

awkward to divide effects into important and unimportant bins. After all, “important” is

ill-defined and varies continuously. It is not all obvious how to make this judgment. To make

this less awkward, I can say this: it is important to make a thoughtful assumption about

the treatment effect, but simply making an explicit assumption moves us most of the way

toward a useful power analysis. When we declare our assumption—regardless of whether we

get it exactly right—we will have useful power analysis. We can say that “our experiment

has % power to detect a treatment effect of .”

Rule 3: From the SD to the SE

In practice, we can use the standard deviation of the outcome in the population under study

to predict the standard error of the estimated treatment effect. To motivate this rule, recall

the regression model, yi = α + τDi + ϵi that allows us to estimate the treatment effect τ

via least squares. By assuming ϵi ∼ N (0, σ2) we can obtain the classical standard error

estimate SEclassic
τ̂ =

√
σ2

N ·D·(1−D)
, where D represents the fraction assigned to the treatment
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group (or the average of the Di) and N represents the total sample size in the two conditions.

Assuming balanced assignment to treatment and control where D = 1
2
and n1 = n0 = n,

we have SEclassic
τ̂ =

√
σ2

2·n· 1
4

= 2·σ√
2·n . This is a helpful result. We can think of σ as the

standard deviation of the outcome within each experimental condition. Let S̃D(Y ) denote

an assumption or “guesstimate” about the value of σ. If we can make a good guess S̃D(Y )

about the value of σ, then we can translate that into a good guess about the value of SEτ̂ in

our study.

To obtain a suitable value S̃D(Y ) to plug in for σ, we can use the standard deviation

of a measure of the outcome (or a similar outcome) in a reference population. For a survey

experiment, perhaps a similar survey question has been asked in the American National

Election Study or the Cooperative Election Study. We could also reference a previous

experiment using the same outcome. Plugging the standard deviation into the equation for

the standard error, we can predict that the standard error in our study will be about 2·S̃D(Y )√
2·n .

Importantly, n represents the sample size per condition (not the total sample size).

Rule 3 (SD to SE): We can use features of a reference population to predict the standard

error of the estimated treatment effect in a planned study. The standard error will be about

2·S̃D(Y )√
2·n , where n is the sample size per condition and S̃D(Y ) is the standard deviation of

the outcome in a reference population.

Importantly, this prediction relies on the assumption that ϵi ∼ N (0, σ2), which is not

guaranteed by the design. In fact, one can easily construct creative examples where classical

and robust standard errors diverge substantially. However, the classical standard errors

are close enough to motivate Rule 3. Indeed, Samii and Aronow (2012, 370) write that

“design-based estimators that exploit the randomization distribution while eschewing regression

assumptions may not be as different from classical regression estimators as may seem at first

glance.” In particular, Samii and Aronow (2012, 370) show that design-based and classical
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standard errors are equivalent for balanced designs and constant treatment effects. Thus,

while we should prefer robust standard errors in practice, classical standard errors allow a

simple, closed-form approximation that help us understand the power of our hypothesis tests

using simple, helpful rules.

Rule 4: Adjusting for Adjustment

We can sometimes substantially decrease the standard error by adjustment for covariates

measured pre-treatment. Clifford, Sheagley, and Piston (2021) suggest a promising strategy

of measuring the outcome of interest both before and after the treatment and control-

ling for the pre-treatment measure of the outcome in the regression model. Using the

classical framework from above, Cox and McCullagh (1982, 547) show that regression ad-

justment using k pre-treatment covariates changes the standard error by a factor of about√
(1− ρ2) ·

(
1 + k

(N−3)+k

)
, where ρ2 is the population R2 for a regression predicting the

outcome using the pre-treatment controls within each condition. In the case of a single

pre-treatment covariate, ρ is the correlation between the outcome and the pre-treatment

covariate within each condition. For many designs, N is large relative to k, so that k
(N−3)+k

≈ 1

and the factor becomes about
√
(1− ρ2) (Bloom 1995; Meyvis and Van Osselaer 2017). We

can use this factor to translate the standard error without adjustment into the standard

error with adjustment using
√

(1− ρ2) · SEnoadj.
τ̂ = SEadj.

τ̂ . Alternatively, we can say that

adjustment shrinks the standard error (e.g., from Rule 3) by about
[
1−

√
(1− ρ2)

]
· 100%.

We can use this relationship to compute statistical power by plugging in an assumed value for

ρ2, which I denote as R̃2. As before, we can use a reference population to obtain a suitable

value of R̃2 to adjust the predicted standard error, such as using the R2 of a regression of the

outcome on the control variables in a similar population.
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Rule 4 (Adjustment): We can use features of a reference population to predict how

much regression adjustment using pre-treatment control variables will shrink the standard

error of an unadjusted estimate in a planned study. Regression adjustment will shrink the

standard error of the unadjusted estimate by about

[
1−

√(
1− R̃2

)]
· 100%, where R̃2 is

the R2 of a regression of the outcome on the control variables in a reference population.

Rule 5: From the SE to the MDE

It turns out that the effect we can detect with 80% or 95% power is determined by the standard

error. Bloom (1995) refers to this critical treatment effect as the “minimum detectable effect”

(MDE).13 The arms of the 90% confidence interval are 1.64 standard errors wide. Thus,

the power of the study is the percent of the sampling distribution that is larger than 1.64

standard errors. To find the minimum detectable effect, we need to solve for the treatment

effect that positions 80% of the sampling distribution above 1.64. If we plug 0.80 into the

inverse of the standard normal CDF, we obtain Φ−1
std(0.8) = 0.84.14 To position 80% of the

sampling distribution above 1.64 standard errors, the sampling distribution must be centered

(1.64 + 0.84) = 2.48 standard errors above zero, which we can safely treat as 2.5. For 95%

power, we can compute (1.64 + Φ−1
std(0.95)) = (1.64 + 1.64) = 3.3 standard errors (see Bloom

1995 for further discussion). Figure 1 shows the logic of this relationship graphically.

Rule 5 (Bloom’s Rule; SE to MDE): An experiment has 80% power to detect a

treatment effect that is 2.5 times the standard error and 95% power to detect a treatment

effect that is 3.3 times the standard error.

This rule is also helpful for readers (as opposed to the researchers themselves). Even if

the authors of a study do not discuss their statistical power, readers can quickly compute the

13This is distinct from the smallest estimate of the treatment effect that can be statistically significant,
which is 1.64 standard errors.

14In R, we can use qnorm(0.80).
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minimum detectable effect with 80% power by multiplying the standard error times 2.5 and

the minimum detectable effect with 95% power by multiplying the standard error times 3.3.

However, see Hoenig and Heisey (2001) on the potential dangers of using statistical power as

a data analysis tool.15

Example: Evaluating Power for Fixed Sample Size

In many research contexts, we do not choose the sample size. For example, it is common

to include survey experiments on modules of the Cooperative Election Study (CES), which

include 1,000 respondents. Or we might have the opportunity to include an experiment

on a survey designed for another purpose. Or we might want to conduct an experiment

on the entire population of interest. In this context, we simply need to know whether our

already-determined sample size provides sufficient statistical power. Rules 3, 4, and 5 allow

us to work in this context (as well as Rules 7 and 9 below).

As an example, imagine we are planning to replicate Ahler and Sood’s (2018) finding that

correcting respondents’ misperceptions of their out-party reduces affective polarization. If we

are planning to replicate the finding on a CES module, then we will have 1,000 respondents

total or 500 respondents in the treatment and control conditions. Do 1,000 respondents

provide sufficient statistical power?

The original experiment shows that correcting respondents’ misperceptions of their out-

party reduces affective polarization. In their experiment, the treatment has two steps. First,

Ahler and Sood (1) ask Republicans to report their perceptions of the percent of Democrats

with certain demographic attributes and (2) ask Democrats to report their perceptions of

the percent of Republicans with certain demographic attributes. After asking respondents

15Hoenig and Heisey (2001, 5) write: “power calculations tell us how well we might be able to characterize
nature in the future given a particular state and statistical study design, but they cannot use information in
the data to tell us about the likely states of nature.”
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Figure 1: This figure shows why experiments have 80% power to detect effects that are 2.5
standard errors. First, the arms of the 90% confidence interval are 1.64 standard errors
wide, so the power of the study is the percent of the sampling distribution that is larger
than 1.64 standard errors. If we plug 0.80 into the inverse of the normal CDF, we obtain
0.84. To position 80% of the sampling distribution above 1.64 standard errors, the sampling
distribution must be centered (1.64 + 0.84) standard errors = 2.48 standard errors above
zero, which we can safely treat as 2.5.
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to report their perceptions of the out-party, Ahler and Sood provide respondents with the

correct information. Compared to a control group that was neither asked their perceptions

nor given the correct information, the treatment group evaluated supporters of the out-party

more favorably on a 101-point feeling thermometer scale. They estimate a treatment effect

of 6.4 points on the 101-point scale with a 95% confidence interval of [3, 10]. As part of

a much larger study, Broockman, Kalla, and Westwood (2022) closely replicate Ahler and

Sood’s result and estimate the treatment effect is 3.9 with a 90% confidence interval of [1.1,

6.6].16 In both cases, the 90% confidence interval includes only positive effects, so the authors

reject the null hypothesis that the treatment effect is less than or equal to zero and conclude

that the treatment has the hypothesized positive effect on the feeling thermometer toward

supporters of the out-party.

How could we use features of a reference population along with Rules 3, 4, and 5 to

evaluate our study?17 Our goal is to use Rule 3 to predict the standard error, use Rule 4

to account for any control variables we plan to use, and use Rule 5 to find the minimum

detectable effect with 80% and 95% power. If that minimum detectable effect is sufficiently

small, then we will say that our study has adequate statistical power.

Without Control Variables: Rules 3 and 5

Using Rule 3, the standard error will be about 2·S̃D(Y )√
2·n . In this context, n = 500 because we

have two experimental conditions and N = 1, 000 in a CES module. However, we must plug

a suitable value for S̃D(Y ) into the equation. For this application, and many others, we can

16Broockman, Kalla, and Westwood (2022) report a slightly different analysis in the main text of their
paper. Most notably, they use the difference between evaluations of the “people who are” the in-party and
“people who are” the out-party. Using their replication data, I run an analysis that treats evaluations of
“people who are” the out-party as the outcome (instead of the difference). This latter, alternative analysis is
similar to Ahler and Sood’s approach, so I focus on it here.

17In planning a replication of Ahler and Sood’s result, we would ideally translate the standard errors from
the original study (as well as Broockman, Kalla, and Westwood’s (2022) replication) into a standard error
and minimum detectable effect for our study—see Rule 7 below. But, for the sake of this example, suppose
this valuable information is not available. Also, triangulating from several sources is helpful.
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think of S̃D(Y ) as the standard deviation of the outcome in the control group (or treatment

group if that is easier).

In practice, we can look to standard deviations in reference populations “like” our

experimental sample.18 For example, the 2020 American National Elections Study (ANES)

asks a similar survey question. The ANES version asks respondents to report their feelings

toward the Democratic [Republican] party, while Ahler and Sood ask respondents to report

their feelings toward supporters of the Democratic [Republican] party. The standard deviation

of the responses to the similar ANES question is 20.8.

Using Rule 3, the standard error in our replication will be about 2·S̃D(Y )√
2·n = 2·20.8√

2·500 = 1.32.

Using Rule 5, a standard error of 1.32 means that we will have 80% power to detect a

treatment effect of 2.5 · SE = 2.5 · 1.32 = 3.30 points on the 101-point scale and have 95%

power to detect a treatment effect of 3.3 · SE = 3.3 · 1.32 = 4.36 points. As substantive

experts, if we determine that these effects are acceptable (e.g., they correspond to the smallest

substantively meaningful effect), then the experiment has adequate statistical power.

With Control Variables: Rules 3, 4, and 5

To shrink the standard error (and the minimum detectable effect along with it), we can

consider the adjustment strategy of Broockman, Kalla, and Westwood (2022). They control

for a seven-party party identification scale and partisan strength. Rule 4 states that regression

adjustment will shrink the unadjusted standard error by about

[
1−

√
1− R̃2

]
· 100%, but

we need to choose a suitable value of R̃2 to plug into the equation.

In the 2020 ANES, the seven-point party identification scale and partisan strength scale

have R2 of 5% for the similar feeling thermometer toward the Democratic and Republican

parties (rather than “supporters of” those parties). For R̃2 = 5%, this adjustment strategy

18In a pinch, we can use the crude rule of thumb that the range of a variable tends to be about four times
the standard deviation (Wan et al. 2014), so 101/4 = 25.25, though this rule should be used only as a first
approximation, if used at all.
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will shrink the standard error by about

[
1−

√
1− R̃2

]
=

[
1−

√
1− 0.05

]
= 2.5%. This

strategy is perhaps worth pursuing, but will not change the standard error dramatically.19

Adding the adjustment to our calculation, our standard error will be about 2·S̃D(Y )·
√

1−R̃2
√
2·n =

2·20.8·
√
1−0.05√

2·500 = 1.28. Using Rule 5, a standard error of 1.28 means that we will have 80%

power to detect a treatment effect of 2.5 ·SE = 2.5 · 1.28 = 3.20 points on the 101-point scale

and have 95% power to detect a treatment effect of 3.3 · SE = 3.3 · 1.28 = 4.22 points. The

minimum detectable effects using Broockman, Kalla, and Westwood’s adjustment strategy

are practically the same as those without any adjustment.

However, Clifford, Sheagley, and Piston (2021) offer a potentially promising approach here.

They suggest measuring the outcome both before and after the treatment and then controlling

for the pre-treatment measure. This pre-treatment measure should be strongly related to

the post-treatment outcome. If we let R̃2 = 40%—though we should do additional work to

confirm this working assumption20—then the standard error will be about 2·20.8·
√
1−0.40√

2·500 = 1.02.

For a standard error of 1.02, we will have 80% power to detect a treatment effect of

2.5 ·SE = 2.5 · 1.02 = 2.55 points on the 101-point scale and 95% power to detect a treatment

effect of 3.3 ·SE = 3.3 · 1.02 = 3.37 points. This adjustment strategy might make a difference

in whether we consider our 1,000-respondent study adequately powered.

19It seems reasonable, too, that these two variables will explain less variation in feelings toward “supporters
of” the Democratic and Republican parties, so this R2 of 5% might be too high. Indeed, re-analysis of
Broockman, Kalla, and Westwood’s data shows that these two control variables produce an R2 of 0.9% in
the control group and 1.8% in the treatment group. An R2 of 1.4% (which is the average of the two) will
shrink the standard error by about 0.7%. This difference is negligible compared to a strategy without control
variables.

20In a small pilot study, Culter, Pietryka, and Rainey (2024) validate a strategy of measuring the feelings
toward supporters of the out-party before and after the treatment. In their small pilot with 250 respondents,
they find that the pre-treatment measure has an R2 of about 73%. This suggests that the pre-post strategy
will shrink the standard error by about 48%.
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Rule 6: From the SD to the Sample Size

Rule 5 is helpful—it gives us the minimum detectable effect for a given study. But it does not

produce the sample size that we need to obtain 80% or 95% power. To find the sample size

that produces our desired minimum detectable effect (i.e., usually the smallest substantively

meaningful effect), we can combine Rules 3, 4, and 5. Suppose we want our experiment to

have 80% power to detect the effect τ̃ . Then we need τ̃ = SE
2.5

=
S̃D(Y )√

2·n
2.5

. Solving for n, we find

that we will need 2 ·
(

2.5·S̃D(Y )
τ̃

)2

respondents per condition to obtain 80% power. If we are

adjusting for control variables, we need 2 ·

 ˙
2.5·S̃D(Y )·

√(
1−R̃2

)
τ̃

2

respondents per condition

for 80% power. For 95% power to detect the effect τ̃ , the factor changes from 2.5 to 3.3 and

we need 2 ·
(

3.3·S̃D(Y )
τ̃

)2

or 2 ·

3.3·
˙

S̃D(Y )·
√(

1−R̃2
)

τ̃

2

respondents per condition, respectively.21

Rule 6 (SD to Sample Size): We can use features of a reference population to compute

the sample size we will need in a planned study. For 80% power to detect the treatment

effect τ̃ , the sample size per condition will need to be about 2 ·
(

2.5·S̃D(Y )
τ̃

)2

(or 2 · ˙
2.5·S̃D(Y )·

√(
1−R̃2

)
τ̃

2

if including control variables), where S̃D(Y ) is the standard deviation

of the outcome in a reference population and R̃2 is the R2 of a regression of the outcome

on the control variables in a reference population. For 95% power, the factor changes from

2.5 to 3.3.

21This leads to another useful rule of thumb, though this one is rough. Suppose that we are interested in
effects that are 10% of a standard deviation. (Lovakov and Agadullina (2021) find that about one in five

studies have effects smaller than 11% of a standard deviation.) Then the term

(
S̃D(Y )

τ̃

)2

equals 100, so we

can simply multiply the factors 2 · 2.52 = 12.5 and 2 · 3.32 = 21.8 by 100 to find the required sample sizes of
1,250 and 2,180 per condition to detect these “small” effects with 80% and 95% power.
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Rule 7: From an Existing Study to the Standard Error (for a

Direct Replication)

In some cases, our planned study is a direct replication of an existing study. In these cases,

we can use the standard error of the existing study to predict the standard error of our

planned replication.

The square root law tells us that the standard error depends on the sample size by a

factor of 1√
n
. For example, the classical standard errors that I use to motivate these rules

have the form SEclassic
τ̂ = 2·σ√

2·n = 2·σ√
2
· 1√

n
. This implies a useful relationship between two

studies A and B that vary in their sample size. The ratio of two standard errors SEA
τ̂ and

SEB
τ̂ with sample sizes nA and nB per condition, respectively, has the form

SEA
τ̂

SEB
τ̂

=
2·σ√
2·nA

2·σ√
2·nB

.

The two 2·σ√
2
cancel and we have

SEA
τ̂

SEB
τ̂

=
√

nB

nA . Solving for SEB
τ̂ , we have SEB

τ̂ =
√

nA

nB · SEA
τ̂ .

Thus, if we know the sample size and standard error of an existing study, then we can use the

existing study to predict the standard error in our planned direct replication: our standard

error will be about
√

nexisting

nplanned · SEexisting
τ̂ .

Rule 7 (Existing Study to SE): We can use an existing study to predict the standard

error of the estimated treatment effect in a planned replication. The standard error will

be about
√

nexisting

nplanned · SEexisting
τ̂ , where nexisting is the number of respondents per condition

in the existing study, SEexisting
τ̂ is the estimated standard error in the existing study, and

nplanned is the number of respondents per condition in the planned replication.

But how “close” does the replication need to be to the original study? Technically, we

need two assumptions to hold: (1) same design and estimator (always a balanced, between-

subjects design with optional regression adjustment in our case), (2a) the treatment groups

should have the same standard deviation of the outcome (or residuals in the case of regression

adjustment) in the existing and planned study, and (2b) the control groups should have the
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same standard deviation of the outcome (or residuals in the case of regression adjustment in

the existing and planned study. In practice, these assumptions seem to safely hold when we

have (1) the same design and estimator, (2) a similar population (e.g., same survey provider),

and (3) an identical outcome measure. For example, we should NOT use this rule if (1) the

original study used an unbalanced design and the planned study uses a balanced design,

(2) the original study used regression adjustment and the planned study does not, (3) the

original study used YouGov and the planned study uses MTurk, or (4) the original study

used a seven-point Likert scale and the planned study uses a five-point Likert scale. We can

safely use this rule if the treatment differs somewhat between the studies, as long as the

new treatment does not result in a meaningfully different standard deviation in the outcome

measure (or residuals) compared to the original treatment.

Rule 8: From an Existing Study to the Sample Size (for a

Direct Replication)

We can also use an existing study to compute the sample size we need to obtain a desired power

level for a direct replication. From Rule 7, we know that SEplanned
τ̂ =

√
nexisting

nplanned · ŜE
existing

τ̂ .

If we want 80% power to detect the effect τ̃ in our planned replication, then we need

SEplanned
τ̂ = τ̃

2.5
(see Rule 5). Plugging this into Rule 7 and solving for nplanned, we will need

about nexisting ·
(

2.5
τ̃
· ŜE

existing

τ̂

)2

respondents per condition. For 95% power, we will need

about nexisiting ·
(

3.3
τ̃
· ŜE

existing

τ̂

)2

respondents per condition.

Rule 8 (Existing Study to Sample Size): We can use an existing study to compute the

sample size we will need in a planned replication. For 80% power to detect the treatment

effect τ̃ , we will need about nexisting ·
[
2.5
τ̃
· ŜE

existing

τ̂

]2
respondents per condition, where

nexisting is the number of respondents per condition in the existing study and SEexisting
τ̂ is
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the estimated standard error in the existing study For 95% power, the factor changes from

2.5 to 3.3.

Rule 9: From Pilot Data to the SE (for a Replication)

It is common to run a small pilot study prior to the experiment for reasons unrelated to

statistical power.22 For example, we might like to learn whether respondents can accurately

remember certain details of a vignette. If we have pilot data available, we can also use these

pilot data to predict the standard error in the full study. Suppose, for example, that we have

tentatively planned to run a full study with 1,000 respondents. We might run a pilot study

on 100 respondents to make sure that no issues arise. Since the planned study is a direct

replication of the pilot, we can perform the planned analysis on the pilot data and use Rule

7 to predict the standard errors (and minimum detectable effect) in the full study.23 For

example, if the small pilot has a standard error of 2.0, then a good guess of the standard

error in the full study is
√

100
1,000

· 2.0 = 0.32 · 2.0 = 0.63.

However, translating the standard error from a small pilot study is meaningfully different

from translating the standard error from another full study. Recall that the standard

error estimate for any study is only an estimate. And while the standard error estimate is

usually accurate, pilot studies are typically small enough to worry about the noise in the

estimate. With a noisy estimate of the standard error, we might happen to substantially

under-estimate the standard error (and thus over-estimate power). To protect against running

an under-powered study, I recommend predicting the standard error conservatively from pilot

data.

To understand how severely you might under-estimate (or over-estimate) the standard

22Importantly, one should not use pilot data to estimate the treatment effect τ̂ . Any pilot study will not
be sufficiently precise to provide a useful estimate of the treatment effect (Leon, Davis, and Kraemer 2011;
Albers and Lakens 2018).

23We should not pay attention to the point estimates in the pilot data; the point estimates are too noisy to
be useful for any purpose.
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error using Rule 7, recall the that standard error of a sample standard deviation is about

SE (sample SD) = sample SD ·
√

1
4·n so that the factor

√
1
4·n · 100% gives us a typical error

in the estimate of the standard error as a percentage. For n = 50 respondents per condition,

the standard error estimate is typically off by about
√

1
4·n · 100% =

√
1

4·50 · 100% = 7%

(either too high or too low), with errors larger than about 14% being unusual. To protect

against an under-powered study, we can increase the predicted standard error by a factor of

2 ·
√

1
4·n + 1 =

√
1
n
+ 1, which roughly corresponds to the upper bound of a 95% confidence

interval for the standard error. Plugging this conservative standard error into Rule 7 above,

we obtain
√

npilot

nplanned

[(√
1

npilot + 1
)
· ŜE

pilot

τ̂

]
as a conservative estimate of the standard error.

Rule 9 (Pilot Data to SE): We can use pilot data to predict the standard error of

the estimated treatment effect in a planned study. Conservatively, the standard error will

be about
√

npilot

nplanned

[(√
1

npilot + 1
)
· ŜE

pilot

τ̂

]
, where npilot is the number of respondents per

condition in the pilot data, SEpilot
τ̂ is the estimated standard error using the pilot data,

and nplanned is the number of respondents per condition in the planned study.

Rule 10: From Pilot Data to the Sample Size

Perhaps most importantly, we can use the logic of Rule 8 to make adjustments to the sample

size of the planned study. Suppose that we want to design an experiment with 80% power

to detect the effect τ̃ . By Rule 5, we need the standard error to be τ̃
2.5
. Using Rule 9, we

can conservatively predict that the standard error will be
√

npilot

nplanned

[(√
1

npilot + 1
)
· ŜE

pilot

τ̂

]
.

Setting this equal to τ̃
2.5

and solving for nplanned, we can conservatively predict that npilot ·[
2.5
τ̃
·
(√

1
npilot + 1

)
· ŜE

pilot

τ̂

]2
respondents per condition will give us 80% power to detect the

effect τ̃ .
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Rule 10 (Pilot Data to Sample Size): We can use pilot data to conservatively predict

the sample size we will need in a planned study. For 80% power to detect the treatment effect

τ̃ , we will (conservatively) need about npilot ·
[
2.5
τ̃
·
(√

1
npilot + 1

)
· ŜE

pilot

τ̂

]2
respondents

per condition, where npilot is the number of respondents per condition in the pilot data

and SEpilot
τ̂ is the estimated standard error using the pilot data. For 95% power, the factor

changes from 2.5 to 3.3.

More Examples: Finding the Sample Size

In the examples above, we imagined a research context in which the sample size was not

under our control. But any many contexts, we can control (or must choose) the sample

size. Continuing our example of Ahler and Sood’s (2018) experiment from above, we can

use features of a reference population, similar existing studies, and pilot data to predict the

required sample size. For the Ahler and Sood example, we have all three available. For

simplicity, suppose that we would like 95% power to detect a treatment effect of 3 points on

the 101-point scale.24

Features of a Reference Population

Above, we use the ANES to motivate setting S̃D(Y ) to 20.8 and R̃2 to 5%. Rule 6 tells us

that, without control variables, we will need about 2 ·
(

3.3·S̃D(Y )
τ̃

)2

= 2 ·
(
3.3·20.8

3

)2
= 1, 050

respondents per condition for 95% power. With control variables that predict the outcome

with an R2 of 5%, this becomes 2 ·

3.3·S̃D(Y )·
√(

1−R̃2
)

τ̃

2

= 2 ·
(

3.3·20.8·
√

(1−0.05)

3

)2

= 995.

24A 3-point effect on the 101-point scale is the lower bound of Ahler and Sood’s 95% confidence interval.

23



An Existing Study: Ahler and Sood (2018)

Ahler and Sood (2018) have about 268 respondents per condition with a standard error

of about 1.8 on the 101-point scale. If we mimic their design, then we can use Rule 8 to

predict that we will need nexisting ·
[
3.3
τ̃
· ŜE

existing

τ̂

]2
= 268 ·

[
3.3
3
· 1.8

]2
= 1, 051 respondents

per condition for 95% power to detect a treatment effect of 3 points on the 101-point scale.

An Existing Study: Broockman, Kalla, and Westwood (2022)

Broockman, Kalla, and Westwood (2022) have about 502 respondents per condition with a

standard error of about 1.67 on the 101-point scale. If we mimic their design, then we can

use Rule 8 to predict that we will need nexisting ·
[
3.3
τ̃
· ŜE

existing

τ̂

]2
= 502 ·

[
3.3
3
· 1.7

]2
= 1, 694

respondents per condition for 95% power to detect a treatment effect of 3 points on the

101-point scale.25

A Pilot Study: Culter, Pietryka, and Rainey (2024)

Culter, Pietryka, and Rainey (2024) conduct a pilot study with about 85 respondents per

condition. Their study uses the pre-post strategy suggested by Clifford, Sheagley, and Piston

(2021) and they include the pre-treatment measure as a control variable. They analyze the

small pilot data set as they plan to analyze the full data set and find a standard error of 2.13.

Using Rule 10, they will need (conservatively) about npilot ·
[
3.3
τ̃
·
(√

1
npilot + 1

)
· ŜE

pilot

τ̂

]2
=

85 ·
[
3.3
3
·
(√

1
85

+ 1
)
· 2.13

]2
= 573 respondents per condition for 95% power to detect a

treatment effect of 3 points on the 101-point scale. Cutler, Pietryka, and Rainey’s approach

requires many fewer observation because their pre-treatment measure is highly predictive of

the outcome.

25In Broockman, Kalla, and Westwood’s data, the standard deviation of the outcome is about 27, which is
much larger than the standard deviation of the similar measure in the ANES (about 21) and the standard
deviation of Ahler and Sood’s measure (about 22). This highlights the importance of triangulating power
calculations using multiple sources to motivate the assumptions.
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Rule 11: From 80% Power to 95% Power

In thinking about the tradeoff between 80% and 95% power it can be helpful to have a rule

connecting sample size requirements. Recall from Rule 7 that
SEA

τ̂

SEB
τ̂

=
√

nB

nA . For an assumed

treatment effect τ̃ , the standard errors that yield 80% and 95% power are given by τ̃
2.5

and τ̃
3.3

,

respectively. Then we have
SEA

τ̂

SEB
τ̂

=
τ̃
2.5
τ̃
3.3

= 3.3
2.5

=
√

nB

nA . Then we can see that nB

nA =
(
3.3
2.5

)2
=

1.74. This means that to increase the power from 80% to 95%, we need increase our sample

size by about 74%. With less rounding error, this becomes 75%.

Rule 11 (80% to 95% Power): Increasing the sample size by 75% will increase the

power from 80% to about 95%.

How Are Interactions Different?

Up to this point in the paper, I have focused on a hypothesis about the treatment effect (i.e.,

“average treatment effect” or ATE). But what if we have a hypothesis about an interaction

(i.e., a difference in treatment effects across two scenarios)? The general logic of the rules

extends to the interaction, with two minor modifications.

Assume a 2× 2 factorial design with two treatments. Then we have potential outcomes

Yi(1, 1) if assigned to both treatments, Yi(1, 0) if assigned to the first treatment, Yi(0, 1) if

assigned to the second treatment, and Yi(0, 0) if assigned neither treatment for respondent

i of N . Then we can define the interaction as δ =
[

1
N

∑N
i=1 Yi(1, 1)− 1

N

∑N
i=1 Yi(0, 1)

]
−[

1
N

∑N
i=1 Yi(1, 0)− 1

N

∑N
i=1 Yi(0, 0)

]
.

Imagine we assign n respondents to each of the four conditions. We create two indicator

variablesD1 andD2 that equal 1 if the respondent is assigned to the first and second treatment,

respectively, and 0 otherwise. Then we create the observed outcome Y = Y (D1, D2).

Then we estimate the interaction in practice using least squares estimates of the model

25



Y = β0+β1 ·D1+β2 ·D2+δ ·D1 ·D2+ ϵ. The parameter δ is the interaction. Inference about

this parameter is the same as described above (least squares regression and robust standard

errors; inferences about δ using the 90% confidence interval). By assuming ϵi ∼ N (0, σ2), the

classical variance for the least squares estimates of the parameter vector β = [β0, β1, β2, δ]
′

is V ar
(
β̂
)
=

(
X

′
X
)−1

σ2 for the design matrix X = [1, D1, D2, D1 ·D2]. The experimental

design requires n repetitions of each of the four unique rows of X, which allows us to simplify(
X

′
X
)−1

and find that the bottom right element of
(
X

′
X
)−1

σ2—the variance of δ̂—equals

4
n
. This gives us SEclassic

δ̂
=

√
4·σ2

n
= 2·σ√

n
, where n represents the number of respondents

assigned to each condition.26

The standard error for an interaction has a different relationship to the standard deviation,

so two of the rules above change for interactions.

• A Modification to Rules 3 and 6. Rules 3 and 6 help us use features of a reference

population to predict the standard error for the estimate of a treatment effect and

approximate the required sample size, respectively. When estimating an interaction

rather than a treatment effect, we need to adjust these approximations.

– First, Rule 3 requires adjustment. As explained above, the standard error for the

estimated interaction is about 2·S̃D(Y )√
n

rather than 2·S̃D(Y )√
2·n for the treatment effect.

– Second, Rule 6 requires adjustment. Suppose we want our experiment to have

80% power to detect the interaction δ̃. Then we need δ̃ = 2.5 · SE = 2.5 · 2·S̃D(Y )√
n

.

Solving for n, we find that n = 4 ·
(

2.5·S̃D(Y )

δ̃

)2

. If we are adjusting for control

26Alternatively, we can think of the estimate of the interaction effect as the difference in differences of
sample means δ̂ =

[
Y 11 − Y 01

]
−

[
Y 10 − Y 00

]
, where Y 11 represents the sample average for respondents

where D1 = 1 and D2 = 1 and so on. Assuming independence of the sample means, the variance of these

differences is the sum of the variances of each term, so that V ar(δ̂) = σ2

n + σ2

n + σ2

n + σ2

n = 4·σ2

n . This

also give us SEclassic
δ̂

=
√

4·σ2

n = 2·σ√
n
. This motivation that Andrew Gelman uses in his widely-shared blog

post suggesting that “you need 16 times the sample size to estimate an interaction” (accessed May 3, 2024;
persistent link: https://archive.md/FOTo7).

26

https://archive.md/FOTo7


variables, we have 4 ·

 ˙
2.5·S̃D(Y )·

√(
1−R̃2

)
δ̃

2

. For an interaction, notice that the

first factor changes from 2 to 4 in Rule 6.

• A Modification to Rules 9 and 10. Second, Rules 9 and 10 require a small

adjustment to account for the change from N = 2 · n in the treatment effect context to

N = 4 · n in the interaction context—the standard error will be more accurate with

a larger total sample size. The adjustment factor changes from
(√

1
npilot + 1

)
in the

treatment effect context to

modified︷ ︸︸ ︷√
1

2 · npilot
+ 1 in the interaction context.

Comparing the standard error for the interaction to the standard error for the treatment

effect leads to three important observations. First, for the treatment effect, we had SEclassic
τ̂ =√

σ2

2·n· 1
4

= 2·σ√
2·n = 1√

2
· 2·σ√

n
; thus the standard error for the interaction is

√
2 times larger

(about 41% larger) than the standard error for the treatment effect. In order to make the

standard errors the same, we need to double the sample size in each condition. Second,

the 2× 2 factorial design has twice as many conditions and thus requires twice the sample

size in total. Third, the interaction is likely much smaller than the treatment effect. In a

widely shared blog post, Andrew Gelman famously suggests that “you need 16 times the

sample size to estimate an interaction than to estimate a main effect” (accessed May 3,

2024; persistent link: https://archive.md/FOTo7). While this rule is too crude to apply

generally—it makes strong assumptions about the treatment effect of interest—it does starkly

highlight the demands of estimating an interaction relative to the treatment effect. It can

help our intuition to partition Gelman’s 16x claim into its constituent parts: you need twice

the number of respondents per condition for a similarly precise estimate, twice the number of

conditions, and four times the number of respondents when the parameter is half the size.
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Example: Interactions

Robbins et al. (2024) study how respondents evaluate in-party legislators when they criticize

an out-party president following a covert operation. They hypothesize that Republicans,

for example, will report higher approval of Republican legislators that are more critical of

the Democratic president, but that this effect will be much larger when the operation fails

than when the operation succeeds. To test their hypothesis, they design a 2 × 2 factorial

experiment. In each condition, a vignette describes (1) a covert operation that succeeds or

fails and (2) legislators that aggressively criticize or ignore the operation.

Informed by Myrick (2020), the authors expected that criticism would increase approval

by about 0.33 points on a seven-point scale when the operation succeeded, but by about 1.00

points when the operation failed. This implies an interaction of about 0.67 points.

Myrick (2020) conducted a similar experiment and measured her outcomes similarly. After

analyzing her data closely, the authors expected their seven-point approval outcome would

have a standard deviation of about 2.0. Using Rule 3 (and modifying for interaction), the

authors would need about 4 ·
(
2.5·2.0
0.67

)2
= 223 respondents per condition (or 892 respondents

in total) for 80% power to detect an interaction of 0.67. For 95% power, the authors would

need about 4 ·
(
3.3·2.0
0.67

)2
= 389 respondents per condition (or 1,556 respondents in total).

The authors also completed a pilot study with 75 respondents per condition. They

conducted their planned analysis on the pilot data and estimated a standard error of

0.40 for the interaction. Using Rule 10, conservatively, the authors would need about

npilot ·
[
2.5
τ̃
·
(√

1
2·npilot + 1

)
· ŜE

pilot

τ̂

]2
= 75 ·

[
2.5
0.67

·
(√

1
2·75 + 1

)
· 0.40

]2
= 195 respondents

per condition (or 780 respondents total) to have 80% power to detect an interaction of 0.67.

For 95% power, they would need about 75 ·
[

3.3
0.67

·
(√

1
2·75 + 1

)
· 0.40

]2
= 340 respondents

per condition (or 1,360 respondents total) to have 95% power.27

27Robbins et al. ultimately used 375 respondents per condition (or 1,500 respondents total). Using
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How to Use the Rules

Table 1 shows how you can use the rules to establish that your planned experiment is

well-powered. Broadly, there are three strategies, or ways to arrange our thinking:

1. For a given sample size and statistical power, show that the minimum detectable effect

corresponds to a “small” effect, either the smallest substantively meaningful effect or

the smallest plausible effect given the available evidence.

2. For given sample size and effect of interest, show that the statistical power of the

experiment is greater than a chosen threshold (e.g., 80% or 95%).

3. For a given statistical power and effect of interest, show that the sample size meets (or

exceeds) the required sample size.

However, we should not draw strong distinctions between these strategies—the strategies

differ only in the order in which the sample size, effect of interest, and statistical power

are chosen. In the end, it simply matters that the three components combine to form a

well-powered experiment.

To make each of these arguments, we can gather data from three potential sources, ideally

relying on multiple.

1. Features of a reference population. We can find studies that measure our outcome (and

perhaps control variables) on a similar population. We can use the standard deviation

and R2 in this reference population to predict the standard deviation and R2 in our

planned study.

2. Existing study. We can find an existing study that uses the same design and estimator,

population, and outcome measure. We can adjust the standard error estimates in the

Rule 9, the authors would conservatively predict the standard error would be about
√

npilot

nplanned · ŜE
pilot

δ̂ =√
75
375 · 0.40 = 0.19. In the full, 1,500-respondent study, the standard error was 0.18, which suggests a

statistical power of about 1− Φstd

(
1.64− τ̃

SE

)
= 1− Φstd

(
1.64− 0.67

0.18

)
= 98% to detect an interaction of

0.67.
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existing study to predict the standard error in our planned study. The sample size and

treatment can differ; otherwise the studies should be identical (or very nearly so).

3. Pilot data. We can use pilot data. We can adjust the standard error estimates from the

pilot data to predict the standard error in our planned study. Because the standard error

estimates in the pilot data will be quite noisy, we can make a conservative adjustment.

Table 1 describes how we might use these various strategies.
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Extensions

What if I want power other than 80% or 95%?

Throughout the paper, I discuss rules to obtain the minimum detectable effect and required

sample size for 80% or 95% power. The rules for 80% power have a factor of 2.5 that can be

changed to 3.3 for 95% power. These factors are the minimum detectable effects, in standard

errors (i.e., see Rule 5). What about other power levels? Table 2 provides the minimum

detectable effect, in standard errors, for a variety of power levels.28 We can use these factors

rather 2.5 for 80% power (or 3.3 for 95% power) in the relevant rules. Table 2 also provides

the percent change in sample size to change the power from 80% to various other levels (i.e.,

see Rule 11).

Table 2: This table shows the minimum detectable effect, in standard errors, for a variety of
power levels. We can use these values to find the minimum detectable effect for power levels
other than 80% and 95% (i.e., as in Rule 5). We can also use these factors rather 2.5 for 80%
power (or 3.3 for 95% power) in the relevant rules. For convenience, this table also shows
the percent change in sample size required to change the statistical power from 80% to the
various levels.

Power
Minimum Detectable Effect

(in Standard Errors)
Percent Change in Sample

Size from 80% Power

20% 0.8 -90%

40% 1.4 -69%

60% 1.9 -42%

80% 2.5 0%

90% 2.9 39%

95% 3.3 75%

98% 3.7 121%

99% 4.0 155%

99.9% 4.7 263%

28I round these minimum detectable effects to the nearest tenth. For greater precision, we can use
pnorm(0.95) + pnorm(0.80), where 0.80 corresponds to 80% power and can be changed to the desired
power level.
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What if I want to use a 95% confidence interval?

Checking that a 90% confidence interval contains only values consistent with the research

hypothesis corresponds to a size-0.05 test. However, some researchers prefer to use a 95%

confidence interval, which corresponds to size-0.025 test for directional claims. Table 3

provides the minimum detectable effects for researchers using a 95% confidence interval.29

We can use these factors rather 2.5 for 80% power in the relevant rules.

Table 3: This table is an alternate version of Table 2 for researchers who wish to use a 95%
confidence interval rather than a 90% confidence interval. The table shows the minimum
detectable effect, in standard errors, for a variety of power levels. Researchers can use these
values to find the minimum detectable effect for power levels other than 80% and 95% (i.e.,
as in Rule 5. Researchers can also use these factors rather 2.5 for 80% power (or 3.3 for 95%
power) in the relevant rules. For convenience, this table also shows the percent change in
sample size required to change the statistical power from 80% to the various levels.

Power
Minimum Detectable Effect

(in Standard Errors)
Percent Change in Sample

Size from 80% Power

20% 1.1 -84%

40% 1.7 -63%

60% 2.2 -38%

80% 2.8 0%

90% 3.2 34%

95% 3.6 66%

98% 4.0 105%

99% 4.3 134%

99.9% 5.0 225%

To achieve the same statistical power with a 95% confidence interval (which corresponds to

a size-0.025 test) compared to a 90% confidence interval (which corresponds to a size-0.05

test), researchers need to increase their sample size by about 27% for 80% power and 20% for

95% power.

For example, I noted above that Ahler and Sood (2018) have about 268 respondents per

29I round these minimum detectable effects to the nearest tenth. For greater precision, we could use
pnorm(0.975) + pnorm(0.80), where 0.80 corresponds to 80% power and can be changed to the desired
power level.
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condition with a standard error of about 1.8 on the 101-point scale. Suppose researchers

want 80% power to detect a treatment effect of 3 points on the 101-point scale with a 95%

confidence interval. Using Rule 8 modified for a 95% confidence interval, researchers would

need about nexisting ·
[
2.8
τ̃
· ŜE

existing

τ̂

]2
= 268 ·

[
2.8
3
· 1.8

]2
= 756 respondents per condition

(note the 2.8 in place of the 2.5; using a 90% confidence interval would require about 555

respondents per condition).

Related Work

Cohen (1988) provides the foundational introduction to power analysis, and Cohen (1990)

offers an engaging personal and historical perspective. DeGroot and Schervish (2010, ch.

9) and Casella and Berger (2002, ch. 8) provide a thorough technical discussion. Green-

land et al. (2016) offers an accessible and intuitive discussion organized around potential

misunderstandings of the concepts. Bloom (1995) offers a particularly practical and intuitive

approach using the minimum detectable effect. Cohen (1992), Lenth (2001), and Meyvis

and Van Osselaer (2017) also offer practical guides. Rainey (2014), McCaskey and Rainey

(2015), and Lakens, Scheel, and Isager (2018, see esp. pp. 261-263) discuss the smallest

effects of substantive interest, and Lovakov and Agadullina (2021) offer empirical rules for

effect sizes derived from social psychology. Perugini, Gallucci, and Costantini (2014) offer

an alternative approach to automate power analysis using pilot data, and Lakens (2014)

introduces sequential analysis. Lakens (2022) offers a broader perspective on sample size

justification beyond statistical power. Blair et al. (2019) and Blair, Coppock, and Humphreys

(2023) offer a useful conceptual framework and software for comprehensive evaluation of

research designs.

34



Conclusion

To address the problem of low power in political science research (Arel-Bundock et al. 2022)

and increasing requirements that articles, registered reports, and grant applications include a

power analysis, I offer several useful rules that help political scientists reason about statistical

power. For simple randomized experiments to estimate treatment effects and/or interactions,

these rules can be sufficient to justify a sample size. For those researchers with pilot data, I

offer new advice to use pilot data to automate the power analysis.

Perhaps most importantly, these rules help develop intuitions about statistical power. For

example, these rules can help us quickly appreciate the tradeoffs between spreading survey

respondents across eight conditions rather than four, or between using fewer respondents

through a more expensive provider or more respondents through less expensive provider.

In this paper, I focused mostly on the choice of sample size, but there are more (and

sometimes better) ways to increase statistical power. We must get the ratio of the assumed

treatment effect and the standard error above 2.5 and ideally above 3.3. Rule 5 makes the

task clear—we need a treatment with oomph to make the numerator large and strategies like

regression adjustment, precise measurement instruments, attentive respondents, and large

samples to make the standard error small.30 And keep Rule 5 top of mind. I hope these rules

help us think carefully about these efforts.

30While framed as defending null results, Kane (2024) describes several strategies to increase treatment
effects and decrease the standard error.
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A The Rules

Rule 1 (Power; Most Intuitively): Power equals 1 − Φ(1.64 · SE;µ = τ, σ = SE), where

Φ(z;µ, σ) is the normal CDF, SE is the standard error of the estimated treatment effect, and τ

is the treatment effect.

Rule 2 (Power; From a z Table): Power equals 1 − Φstd

(
1.64− τ

SE

)
, where Φstd(z) is the

standard normal CDF (as found in a standard z table), SE is the standard error of the estimated

treatment effect, and τ is the treatment effect.

Rule 3 (SD to SE): We can use features of a reference population to predict the standard error

of the estimated treatment effect in a planned study. The standard error will be about 2·S̃D(Y )√
2·n ,

where n is the sample size per condition and S̃D(Y ) is the standard deviation of the outcome in

a reference population.

Note: Rule 3 must be modified to handle interaction. See the section “How Are Interactions Different?”

Rule 4 (Adjustment): We can use features of a reference population to predict how much

regression adjustment using pre-treatment control variables will shrink the standard error of an

unadjusted estimate in a planned study. Regression adjustment will shrink the standard error of
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the unadjusted estimate by about

[
1−

√(
1− R̃2

)]
· 100%, where R̃2 is the R2 of a regression

of the outcome on the control variables in a reference population.

Rule 5 (Bloom’s Rule; SE to MDE): An experiment has 80% power to detect a treatment

effect that is 2.5 times the standard error and 95% power to detect a treatment effect that is 3.3

times the standard error.

Note: Rule 5 can be modified to compute the minimum detectable effect for power other than 80% and 95%.

See Table 2. It can also be modified for researchers using 95% confidence intervals rather than 90% confidence

intervals as I recommend. See Table 3.

Rule 6 (SD to Sample Size): We can use features of a reference population to compute the

sample size we will need in a planned study. For 80% power to detect the treatment effect τ̃ , the

sample size per condition will need to be about 2 ·
(

2.5·S̃D(Y )
τ̃

)2

(or 2 ·


˙

2.5·S̃D(Y )·
√(

1−R̃2
)

τ̃


2

if

including control variables), where S̃D(Y ) is the standard deviation of the outcome in a reference

population and R̃2 is the R2 of a regression of the outcome on the control variables in a reference

population. For 95% power, the factor changes from 2.5 to 3.3.

Note: Rule 6 must be modified to handle interaction. See the section “How Are Interactions Different?”

Rule 7 (Existing Study to SE): We can use an existing study to predict the standard error

of the estimated treatment effect in a planned replication. The standard error will be about√
nexisting

nplanned · SEexisting
τ̂ , where nexisting is the number of respondents per condition in the existing

study, SEexisting
τ̂ is the estimated standard error in the existing study, and nplanned is the number

of respondents per condition in the planned replication.

Rule 8 (Existing Study to Sample Size): We can use an existing study to compute the

sample size we will need in a planned replication. For 80% power to detect the treatment effect

τ̃ , we will need about nexisting ·
[
2.5
τ̃ · ŜE

existing

τ̂

]2
respondents per condition, where nexisting is

the number of respondents per condition in the existing study and SEexisting
τ̂ is the estimated
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standard error in the existing study For 95% power, the factor changes from 2.5 to 3.3.

Rule 9 (Pilot Data to SE): We can use pilot data to predict the standard error of the

estimated treatment effect in a planned study. Conservatively, the standard error will be about√
npilot

nplanned

[(√
1

npilot + 1
)
· ŜE

pilot

τ̂

]
, where npilot is the number of respondents per condition in

the pilot data, SEpilot
τ̂ is the estimated standard error using the pilot data, and nplanned is the

number of respondents per condition in the planned study.

Note: Rule 9 must be modified to handle interaction. See the section “How Are Interactions Different?”.

Rule 10 (Pilot Data to Sample Size): We can use pilot data to conservatively predict the

sample size we will need in a planned study. For 80% power to detect the treatment effect τ̃ , we

will (conservatively) need about npilot ·
[
2.5
τ̃ ·

(√
1

npilot + 1
)
· ŜE

pilot

τ̂

]2
respondents per condition,

where npilot is the number of respondents per condition in the pilot data and SEpilot
τ̂ is the

estimated standard error using the pilot data. For 95% power, the factor changes from 2.5 to 3.3.

Note: Rule 10 must be modified to handle interaction. See the section “How Are Interactions Different?”.

Rule 11 (80% to 95% Power): Increasing the sample size by 75% will increase the power

from 80% to about 95%.
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