
Online Appendix for “Compression and
Conditional Effects”

A Statistical Power

Including a product term does reduce statistical power in tests of interaction using second-
differences. If the researcher is correct and there is interaction due to compression (i.e., the
logistic regression model is correct), then including a product term reduces the probability
that the researcher will find a statistically significant interaction effect (i.e., the confidence
interval for the second-difference does not contain zero). However, as I explain in the main
text, statistical arguments proceed by fixing the size of the test at a suitably small value (usually
0.05) and then maximizing power. Maximizing power by increasing the size of one’s test
over-represents the evidence for one’s hypotheses because readers expect the researcher to only
accept their research hypothesis when the evidence overwhelmingly supports it. If power is
maximized at the expense of size, then researchers accept their research hypothesis unless their
is overwhelming evidence against it. Thus, I focus on the size of tests for interaction in the main
text. Nonetheless, attentive researchers are conscious of the power of their tests, so I conduct a
brief analysis here.

To estimate the power of tests for interaction with and without a product term, I simulate
from the model (i.e., data-generating process) Pr(Y ) = logit−1(βx X − βz Z), where X is a
continuous variable ranging from zero to one and Z dichotomous variable that equals zero or
one. I imagine that an analyst correctly suspects that X has a positive effect on Pr(Y ), Z has a
negative effect on Pr(Y ), and that X and Z interact in influencing Pr(Y ) due to compression.
That is, because the event is relatively common (Pr(Y )> 0.5) and Z pushes Pr(Y ) even closer to
zero, there is less room for X to affect Pr(Y ). Therefore, the analyst expects that X should have
a smaller effect when Z = 1. All three hypothesis are correct because logistic regression is the
correct functional form. For varying values of βx , βz, and the sample size, I simulate 1,000 data
sets and compute the proportion that have a statistically significant second-difference. Because
βx and βz vary, the magnitude of this second-difference varies from trivially small (-0.02) to
quite large (-0.21).

Because X is approximately uniformly distributed from zero to one and Z is dichotomous
with half of the observations equal to one and the other half equal to zero, I test for interaction
in each simulated data set by estimating a logistic regression model with and without a product
term, calculating the second-difference as X changes from 0.25 to 0.75 and Z changes from
zero to one.

Notice that for trivial amounts of interaction (e.g., ∆∆= 0.07− 0.09= −0.02), the model
with a product term dramatically reduces the power of the test, especially for sample sizes
around 1,000. However, for larger sample sizes and larger interaction effects, adding a product
term to the model decreases the power of the test only slightly, while fixing the size of the test
at a more typically value near 0.05 (see Figure ??).
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FIGURE 1: A figure showing the statistical power of models including a product term (dashed line)
and excluding a product term (solid line) for detecting interaction. Notice that adding a product term
decreases the power appreciably only for trivially small interaction effects (i.e., ∆∆ = 0.07− 0.09 =
−0.02).

B The Impact of Including an Unnecessary Product Term on
Estimates of Effects of Other Variables

One potential concern is that if the correct model is given by Pr(Y ) = logit−1(βcons + βX X +
βZ Z + βW W ), then including an unnecessary interaction term X Z will lead to biased estimates
of the effect of other variables, such as W . Simulations show that this is not the case. No bias
exists in estimates of the coefficient βW or the first difference Pr(Y |W = whi)− Pr(Y |W = wlo).
I only summarize a brief simulation here, but these result are identical for a range of other
simulations I performed.

1. Set N = 1000. Setting the sample size to other values has no impact on the results.

2. Set βcons = 0 and βX = βZ = 1. Setting these coefficients to other values has no impact on
the results.

3. Draw X , Z , and W from a Uniform(0, 1) distribution to create the covariates. Using other
distributions does not impact the results. Introducing correlations between the covariates
does not impact the results.

4. As βW ranges from -1 to 1, do the following:
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a. Compute π= Pr(Y ).

b. To get an estimate of the expected value of the estimated effect of W , do the following
100,000 times.

i. Simulate Y ∼ Bernoulli(π).
ii. Estimate a logistic regression model with and without a product term.

iii. Store the coefficient for W .
iv. Calculate and store the first difference Pr(Y |W = 0.75)− Pr(Y |W = 0.25).

c. Calculate the mean of the estimated coefficients.

d. Calculate the mean of the estimated first-differences

As Figure 2 shows, the estimates of βW are not affected by the inclusions of an unnecessary
product term. Particularly, there is no bias in either estimate. The mean estimates from the
model with and without a product term entirely overlap with the true values. Figure 3 shows
that the same holds for the first difference.
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FIGURE 2: A figure showing the expected coefficient E(β̂W ) as the true coefficient βW changes for the
models with and without a product term. Note that the two overlap exactly, which means that including
a product term does not bias the coefficients of other explanatory variables.
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FIGURE 3: A figure showing the expected estimate of the first-difference as the true first-difference
changes for the models with and without a product term. Note that the two overlap exactly, which means
that including a product term does not bias the first-differences of other explanatory variables.

C Replication of the Fixed Process Simulation for Rare Events

Particularly given the application of my ideas to the probability of conflict, one might wonder
whether including a product term removes the bias as effectively when the event of interest is
relatively rare. As a simple test case, I use the process Pr(Y ) = 0.04+ 0.04X − 0.02Z , shown in
Figure 4 as a robustness check to the fixed process presented in Figure ??. Notice, as before,
that the model with a product term fits this non-interactive process surprisingly well and the
model with no product term forces interaction into the estimates.
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FIGURE 4: This figure shows the true relationship in the “rare events” simulation study (dotted lines) as
well as how logistic regression models with and without a product term fit the process (solid, bold lines).
Notice that X and Z have small effects on Pr(Y ) and Pr(Y ) is always less than 0.1. In this case, excluding
a product term forces the model to point toward interaction, despite the fact that the relationship is
non-interactive. Including a product term allows the model to fit this non-interactive process surprisingly
well. I use this process as a simple robustness check for the results presented in Figure ??.

Figure 5 presents the results from the fixed “rare events” process. For this rare events
process, the product term does a much better job at removing the bias toward interaction than
the process examined in the main text. Except for extremely large sample sizes near 100,000,
the adding a product term removes nearly all of the bias and removes much of the bias even for
the sample sizes near 100,000. The results suggest that the results presented in the main text
represent a “worst case” scenario (that is what I had in mind when choosing the fixed process)
and that the suggestion to include a product term applies to extremely rare (and, by symmetry,
extremely common) as well as to events with probabilities closer to one-half.
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FIGURE 5: This figure shows the probability of concluding interaction when the true relationship is given
by Pr(Y ) = 0.04+ 0.04X − 0.02Z (i.e., there is no interaction) using logistic regression models with
and without a product term as the sample size, the distribution of X , and the change in X considered
in computing the second-difference varies. Notice that the model including a product term performs
remarkably well, removing almost all of the bias except for extremely large samples.

D Generate a Random Analysis

1. Choose a random relationship that is non-linear and non-interactive.

a. Draw A and B from a uniform distribution between 0.3 and 0.7.

b. Draw C from a uniform distribution between A and B if A< B or between B and A if
B < A.

c. Draw D from a uniform distribution between A− 0.3 and A+ 0.3.

d. Draw E from a uniform distribution between 0 and D if D > 0 or D and 0 if D < 0.

e. The true relationship is then given by Pr(Y ) = β0+β1X +β2Z +β3X 2+β4Z2, where

• β1 = A
• β2 = −3A− B + 4C
• β3 = 4E − D
• β4 = 2A+ 2B − 4C
• β5 = 2D− 4E

f. Check the resulting relationship is monotonic as X and Z range from zero to one. If
not, repeat until a monotonic relationship is obtained.
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Figure 6 illustrates how this procedure works graphically and Figure 7 shows several
randomly simulated relationships using this procedure.

2. Choose a sample size by drawing from a Cauchy distribution, multiplying by 1,000, and
rounding to the nearest whole number. The Cauchy distribution has very heavy tails so
that most samples fall below 2,000, but very large samples (up to 100,000) occur as well.
Table 1 provides the quantiles from this distribution.

3. Choose the distribution of X and Z . Perform the following to generate X and Z .

a. Choose whether X is binary or continuous. Set as binary with probability 0.5.

b. If X is continuous, choose the parameters of the Beta distribution from which it will
be drawn from a uniform distribution from 0.7 to 3. Figure 8

c. If X is binary, choose the proportion of ones from a uniform distribution from 0.1 to
0.9.

d. Repeat for Z .

4. Choose the changes and X and Z used to test for interaction.

a. If X is binary, set 〈x lo, xhi〉 to 〈0, 1〉.

b. If X is continuous, then draw and sort two values from a uniform distribution from
zero to one. Set these sorted draws as 〈x lo, xhi〉.

c. Repeat for Z .

Percentile Sample Size
0% 500

10% 646
20% 815
30% 1,019
40% 1,276
50% 1,614
60% 2,105
70% 2,896
80% 4,427
90% 8,896

100% 100,000

TABLE 1: The distribution of sample sizes I used to simulate analyses.
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FIGURE 6: This figure graphically illustrates how I generate random relationships that are non-interactive
and non-linear using the procedure describe in Step 1.
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FIGURE 7: This figure shows several relationships randomly generated using the steps described in Figure
6 and Step 1 of the algorithm above. The three lines represent the relationship between X and Pr(Y )
when Z equals zero, one-half, and one, respectively. Due to the assumption of monotonicity described in
Step 1(f), the line for which Z = 0.5 must fall between the other two.
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FIGURE 8: This figure shows several possible continuous distributions of X (or Z) randomly generated
using Step 3(b).
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E Model Estimates

As Brambor, Clark, and Golder (2006) and Berry, DeMeritt, and Esarey (2010) explain, ex-
amining tables of coefficients is not always helpful for evaluating interactive hypotheses with
logistic regression models. In the main text I present plots of predicted probabilities (Figure
??), first-differences (Figures ?? and ??), and second-differences (Figure ??). Table 2 presents
the coefficients and standard errors for reference.

Relying on the model with no product term, we can immediately evaluate the evidence for
the Democracy and Distance Hypotheses by looking at the coefficients for Lower Democracy
and log(Distance). We can see that both of these estimates are negative (as expected) and
statistically significant. Further, based on this model, we can already conclude that the negative
effect of log(Distance) is smaller in more democratic dyads since (1) both coefficients are
negative and (2) conflict is relatively rare (i.e., the probability of conflict falls well below 0.5).

No Product Term Product Term
Lower Democracy −0.091∗∗∗ −0.121∗∗∗

(0.005) (0.025)
Log(Distance) −0.306∗∗∗ −0.285∗∗∗

(0.026) (0.031)
Lower Democracy × Log(Distance) 0.004

(0.004)
Allies −0.694∗∗∗ −0.697∗∗∗

(0.063) (0.063)
Power Ratio −0.264∗∗∗ −0.262∗∗∗

(0.019) (0.019)
Noncontiguity −0.980∗∗∗ −0.982∗∗∗

(0.073) (0.073)
Only Minor Powers −0.467∗∗∗ −0.475∗∗∗

(0.070) (0.071)
Constant −1.222∗∗∗ −1.370∗∗∗

(0.202) (0.237)
AIC 13,520 13,520
BIC 13,580 13,589
Num. obs. 39,996 39,996
***p < 0.001, **p < 0.01, *p < 0.05

TABLE 2: Logistic regression models of the probability of conflict in each dyad-year. The model in the
left column excludes the product term, as suggested by Berry, DeMeritt, and Esarey (2010). The model
in the right column includes a product term. Notice that although the product term is not statistically
significant and the BIC for this model is higher (suggesting a worse fit), including this product term
allows a more compelling test of the Interaction Hypothesis.
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