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1. Mathematical Representation of the Statistical Model 

Let 𝑦_𝑖 be an indicator that equals one if the governor of state i opposes the Medicaid expansion and zero otherwise. 
Then we model the probability of opposition as Pr 𝑦! = 1 =   logit!!(𝑋!𝛽), where 

𝑋!𝛽 = 𝛽!"#$ + 𝛽!"#  !"#.GOP  Governor! +   𝛽!"#$#!$Opinion!   + 𝛽!"#  !"#.GOP  Legislature!
+   𝛽!"#"$!"#$Percent  Uninsured! +   𝛽!"#$%&Income! +   𝛽!"!#!!"#Percent  Nonwhite!
+   𝛽!"#$%Percent  Metropolitan! 

and Cauchy(2.5) priors are placed on the coefficients and a Cauchy(10) prior is placed on the intercept. 

 The variables are defined as follows: GOP Governor is an indicator that equals one if the governor is a 
Republican and zero if the governor is a Democrat; Opinion is an estimate of the proportion of a state’s population 
that has a favorable opinion of the Affordable Care act (see Section 2 of this Appendix for the details); GOP 
Legislature is an indicator variable that equals one if Republicans control both branches of the state legislature and 
zero otherwise; Income is the total personal income in the state per capita; Percent Nonwhite is the fraction of the 
state’s population that identify as non-white Hispanic or African-American; Percent Metropolitan is the percent of 
the state that resides in a metropolitan area. Prior to estimation, the continuous variables are standardized by 
subtracting the mean and dividing by two standard deviations and binary variables are centered by subtracting the 
mean (Gelman 2008).  

 We place weakly informative Cauchy(2.5) prior distributions on the coefficients for the (standardized) 
explanatory variables and a more diffuse Cauchy(10) prior on the intercept. We use JAGS called through R to 
perform a 50,000 iteration burn-in and 50,000 additional posterior simulations for three MCMC chains. We 
combined these simulations to perform the inferences. 

2. State-Level Estimates of ACA Favorability 

In the main text, we rely on a state-level estimate of the favorability of the 2010 Affordable Care Act as our measure 
of public opinion. As robustness checks, we also use state-level estimates of support for the Medicaid expansion and 
support for the Tea Party. The estimate state-level public opinion on the Affordable Care Act, we use multilevel 
regression with post-stratification (MRP; Lax and Phillips 2009) to combine the Kaiser Family Foundation Health 
Tracking Polls from January to November of 2013 with census data from 2000 (with 2008 weights).1 Where 𝑦_𝑖 is 
an indicator for whether the respondent views the ACA favorably, supports the Medicaid expansion, or supports the 
Tea Party,  

Pr y! = 1 =   logit!!(𝛼!"#$ +   𝛼! !
!"#$ +   𝛼! !

!"#$"% + 𝛼! !
!"#$  ×!"#$"! +   𝛼! !

!"# +   𝛼! !
!"#$%& +   𝛼! !

!"#$%&'() +   +  𝛼![!]!"#"$) 

In our model, 𝛼!"#$ is a fixed intercept; 𝛼!!"#$, 𝛼!
!"#$"%, 𝛼!

!"#$  ×!"#$%, 𝛼!
!"#, 𝛼!!"!!"#, and 𝛼!!"#$%&'()are unmodeled 

random intercepts by the (categorical) variables indicated by the superscripts and shown in Table 4; and  𝛼!!"#"$ is a 
random intercept modeled as  

𝛼!!"#"$ ∼ 𝑁(𝛼! !
!"#$%& +   𝛼!"#$#Obama  Vote  Share  in  2012!), 

where 𝛼! !
!"#$%& is an unmodeled random effect  and 𝛼!"#$# is a fixed effect. We fit the model and performed the 

                                                
1 Data for the support for the Medicaid expansion are available only from the July 2012 Tracking Poll. 
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poststratification in R using the MRP package available at github.com/malecki/mrp.  Our state-level estimates are 
given below in Figure 1 and available for download at github.com/carlislerainey/ACA_Opinion. 

Variable Categories 
Race • White 

• Black 
• Hispanic 
• Other 

Gender • Male 
• Female 

Race and Gender Interaction • White male 
• White female 
• Black male 
• Black female 
• Hispanic male 
• Hispanic female 
• Other male 
• Other female 

Age • 18-29 
• 30-44 
• 45-64 
• 65+ 

Income • Less than $20,000 
• $20,000 to $40,000 
• $40,000 to $75,000 
• $75,000+ 

Education • Less than high school 
• High school graduate 
• Some college 
• College graduate 
• Postgraduate 

State 50 states plus the District of 
Columbia, though the latter is not 
included in our model of 
gubernatorial opposition. 

Region • South 
• Northeast 
• Midwest 
• West 

Table 1: This table provides individual-level categorical variables used in the MRP process to estimate ACA favorability in the 
states. 
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Figure 1: This figures shows the estimates of ACA favorability by state used in the main analysis. 
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3. Robustness Checks 

We examine a variety of robustness checks, including the choice of prior scale for the Cauchy family, the choice of 
prior family, the choice of estimation technique, model specification, and case selection. 

3.1. Prior Scale 

 First, we demonstrate that the substantive conclusions are similar regardless of the prior scale. We re-estimated 
the main model with an alternative prior specifications to the default Cauchy(2.5) prior specification suggested by 
Gelman et al. (2008). Error! Reference source not found. shows the posterior medians and 90% credible intervals. 
Notice that the substantively conclusions do not change as the prior scale varies. Notice, though, that the prior scale 
mainly affects the upper bound of the 90% credible interval for the constant term and the coefficient for GOP 
Governor. This makes sense, as the likelihood is highly informative that the coefficient for GOP Governor is “not 
negative” but the prior is required to provide the information that the coefficient is “not positive infinity.” 

 
Figure 2: This figure shows how the inferences change as the scale on the Cauchy family of prior distributions changes. Notice 
that while the uncertainty around the estimate increases (mainly the upper bound), the substantive conclusions remain relatively 
unaffected. 

3.2. Prior Family 

In addition to the results being robust to the prior scale, they are also robust to the prior family. To demonstrate this, 
we considered two alternative prior families, the normal and the 𝑡!". We use the normal family because of its 
familiarity and the 𝑡!" because the 𝑡!" with scale 2.5 made the most sense to us as an informative prior based on a 
simple heuristic analysis.2 Figure 3 shows the estimated using the normal prior with various scales (standard 
deviations). Notice that the normal family pools the coefficients much more strongly toward zero, but the results are 
otherwise similar.  

                                                
2 We arrived at the 𝑡!" with scale 2.5 by simulating from the prior predictive distribution, computing quantities of interest, and 
choosing the simulations that seem to best reflect the prior uncertainty in the quantity of interest. The Cauchy(2.5) treats first 
differences of nearly one (or nearly negative one) as overly probable. On the other hand, the Normal priors do not give these 
possibilities enough weight. The 𝑡!" prior with scale 2.5 allows these large shifts without placing undue prior weight on them. 
However, this is not to suggest that the 𝑡!" with scale 2.5 is the best informative prior distribution, but simply useful as a 
robustness check. 
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Figure 3: This figure shows how the inferences change as the scale (standard deviation) on the normal family of prior 
distributions changes. Notice that while the uncertainty around the estimate increases (mainly the upper bound), the substantive 
conclusions remain relatively unaffected. Compare to Error! Reference source not found. to see that while the normal family 
pools the coefficients more strongly toward zero, the substantive conclusions do not change. 

 

Figure 4: This figure shows how the inferences change as the scale (standard deviation) on the 𝑡!" family of prior distributions 
changes. Notice that while the uncertainty around the estimate increases (mainly the upper bound) compared to the Cauchy 
family in Error! Reference source not found. and decreases compared to the normal family shown in Figure 3, the substantive 
conclusions remain relatively unaffected. 

3.3. Choice of Estimation Technique 

In addition to the key substantive conclusions being robust to a range of prior specifications, they are also robust to 
several alternative estimation techniques. We consider several here. First, we compute the MLE estimates in spite of 
the separation. Second, we use Firth’s penalty (Zorn 2005) and compute standard errors using both asymptotic 
approximations, likelihood profiling, and bootstrapping. We also use Gelman et al.’s (2008) approximation to the 
posterior mode and asymptotical approximate confidence intervals and bootstrapping. Finally, we compare each of 
these to our preferred approach of MCMC with a Cauchy(2.5) prior and include the results from the Normal(1) prior 
as a basis of comparison. The key point to take away from these results is the consistency in the estimated 
coefficients and uncertainty across the various estimation strategies. 
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Figure 5: This figure shows how the inferences change across various estimation procedures for numeric explanatory variables 
transformed to have mean zero and standard deviation 0.5 and binary explanatory variables simply centered at their mean. The 
intercept is omitted to save space. For the models estimated with MCMC, the “x” represents the posterior mean, the circle 
represents the posterior median, and the dot represents the posterior mode. This distinction is consequential only for highly 
skewed posterior distributions. The substantive effects reported in the main text rely on MCMC approach with Cauchy priors, but 
the results do not change if we rely on the analytical standard errors or Firth’s penalty. Maximum likelihood clearly fails in this 
case. Though the maximum likelihood estimates depend on the convergence criteria, the default criteria in R suggests that the 
intercept is about -7.7 with a 90% confidence interval from 1,345 to 1,360. For the coefficient for GOP Governor, the defaults 
lead to a coefficient estimate of 18.3 and a 90% confidence interval from 1,334 to 1,371. Notice that the Cauchy prior and Firth's 
penalty regularizes these quantities, providing more reasonable estimates. 

3.4. Case Selection 

With such a small number of cases included in the analysis, we leave open the possibility that a particular case 
drives the results. To address these concerns, we refit the models dropping one state at a time.3 Figure 6 shows the 
results. Notice that although some states are more influential than others, the results are similar regardless of which 
state is dropped from the analysis. 

                                                
3 For the sake of computational tractability, we compute these estimates and standard errors using Gelman et al.’s (2008) EM 
approximation to the posterior mode and asymptotic confidence intervals. 
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Figure 6: This figure shows how the estimates change when each state is removed from the analysis. The top estimate in each 
panel presents the estimate using the full data set. Though sometimes dropping a state causes the confidence interval to overlap 
zero, notice how little the estimates change when each state is dropped. The exception to this pattern is that dropping Alaska, 
which has a unusual amount of reserves given their spending, dramatically and substantively changes the estimated coefficient of 
fiscal health. However, this change does not affect the inference about the key variables in our analysis. 
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4. Evaluating the Possibility of Overfitting and an Overly Informative Prior 

Related to the robustness checks above, we now demonstrate that (1) the Cauchy(2.5) prior is not overly informative 
and (2) the model does not overfit the data. We do this by showing the more informative priors predict out-of-
sample observations slightly better than the prior that we rely on. To do this, we computed Brier scores using leave-
one-out cross validation for a range of prior families and scales. The procedure works as follows: 

1. Start by dropping a single observation (say, Alabama). 

2. Use the rest of the data (all states except Alabama) to estimate the model and the probability that the governor of 
the left-out state opposes the expansion. Save the estimated probability. 

3. Do this for all 50 states. 

4. Calculate the Brier score B using the equation 𝐵 =    𝑦! − 𝑝! !!"
!!!  where 𝑦! equals one if the governor of state i 

opposes expansion and 𝑝! represents the out-of-sample estimated probability that 𝑦! equals one. 

We repeat the procedure above for a variety of different prior families, including the Cauchy, normal, and t, and 
vary the scale parameter across each of the distributions. Figure 3 shows how the Brier scores change as the prior 
family and scale vary. 

 
Figure 7: This figure shows the out-of-sample performance of three prior distributions as the scales vary. Lower Brier scores 
indicate improved out-of-sample predictions. Notice that informative priors (e.g. Normal(1) and Cauchy(2.5)) only slightly 
outperform weaker prior distributions. Because the more and less informative priors perform similarly, we are not as worried 
about overfitting the data. Because we would rather supply too little prior information than too much, we choose use the less 
informative Cauchy(2.5) prior distribution in the main analysis. 

 Notice that the Brier scores are lower (i.e. the out-of-sample prediction is better) when the prior is more 
informative that the prior we rely on. However, the improvement is not dramatic, so we prefer to use too little prior 
information rather than too much. To err on the side of caution, we use the default Cauchy(2.5) prior suggested by 
Gelman et al. (2008). 

 Another potential concern with the small sample is that we are over-fitting the data. (The problem of separation 
that we identify in the main text is just one example of over-fitting.) However, the Brier scores shown in Figure 
7should alleviate any concerns about over-fitting. Notice that the Brier score for our preferred Cauchy(2.5) is about 
0.17. The lowest Brier score among the parameterizations shown is about 0.15 for the much-more-informative 
Normal(0.8) prior distribution. Slightly better performance from a more informative prior is expected. Indeed, 
Gelman et al. (2008) find a very similar pattern across their large corpus of data sets (see especially the right panel 
of their Figure 6). If a more informative prior fit the data substantially better, then over-fitting would be a concern. 
However, the pattern shown in Figure 7 suggests that over-fitting is not a concern. 
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