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Proof of Theorem 1

Recall Theorem 1:

For a monotonic likelihood p(y|β) increasing [decreasing] in βs, proper prior distribution p(β|σ),
and large positive [negative] βs, the posterior distribution of βs is proportional to the prior

distribution for βs, so that p(βs|y) ∝ p(βs|σ). More formally, lim
βs→∞
[−∞]

p(βs|y)
p(βs|σ) = k, for postive

constant k.

Proof. Due to separation, p(y|β) is monotonic increasing in βs to a limit L , so that lim
βs→∞

p(y|βs) = L . By
Bayes’ rule,

p(β|y) = p(y|β)p(β|σ)
∞∫
−∞

p(y|β)p(β|σ)dβ
= p(y|β)p(β|σ)

p(y|σ)︸ ︷︷ ︸
constant w.r.t. β

.

Integrating out the other parameters β−s = 〈βcons, β1, β2, ..., βk〉 to obtain the posterior distribution of βs,

p(βs|y) =

∞∫
−∞

p(y|β)p(β|σ)dβ−s

p(y|σ) , (1)

and the prior distribution of βs,

p(βs|σ) =
∞∫
−∞

p(β|σ)dβ−s.

Notice that p(βs|y) ∝ p(βs|σ) iff p(βs|y)
p(βs|σ) = k, where the constant k 6= 0. Thus, Theorem ?? implies that

lim
βs→∞

p(βs|y)
p(βs|σ) = k

Substituting in Equation 1,

lim
βs→∞

∞∫
−∞

p(y|β)p(β|σ)dβ−s

p(y|σ)

p(βs|σ) = k.

Multiplying both sides by p(y|σ), which is constant with respect to β,

lim
βs→∞

∞∫
−∞

p(y|β)p(β|σ)dβ−s

p(βs|σ) = kp(y|σ).
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Setting
∞∫
−∞

p(y|β)p(β|σ)dβ−s = p(y|βs)p(βs|σ),

lim
βs→∞

p(y|βs)p(βs|σ)
p(βs|σ) = kp(y|σ).

Canceling p(βs|σ) in the numerator and denominator,

lim
βs→∞

p(y|βs) = kp(y|σ).

Recalling that lim
βs→∞

p(y|β) = L and substituting,

L = kp(y|σ),

which implies that k = p(y|σ)
L

, which is a positive constant.

Question and Answers

Does the process partial prior distribution, which depends on the data, invalidate
or bias the estimates or hypothesis tests?

In short, no.

Let me start by clarifying a potential confusion. When I write “the researcher might assess the reasonableness
of the prior distribution by examining the prior distribution and asking herself whether the prior and model
produce a distribution for the quantities of interest that matches her prior information,” I do not mean that
the researcher should compute the (post-data) posterior. Instead, I mean that the researcher should simply
transform the (pre-data) prior into the quantities of interest to check whether the prior makes substantive
sense. I would consider it inappropriate to choose a prior based on the reasonableness of the posterior.

The process does involve initially fitting a model with ML. However, this initial fit only serves one purpose:
to identify the region of the (multivariate) prior distribution that really matters, which simplifies the process
and allows the researcher to choose an appropriate prior for that region. Instead, I view it as almost purely
Bayesian (i.e., computing a posterior based on data with informative priors), except that rather than choose a
full prior distribution (almost always impossible for multivariate models), the researcher places uninformative
priors on the coefficients for the non-separating explanatory variables and an informative prior on the
coefficient for the separating explanatory variable.

Things then get tricky because political scientists usually think of effects in terms of predicted probabilities,
first differences, or risk ratios—not in terms of the coefficients themselves. Of course, these quantities depend
on the values of the coefficients for the non-separating variables. My suggestion is to use ML as a quick
method to assign values to these coefficients. With those coefficients fixed as a reasonable value, it is then
easy to think about the prior distribution for the separating coefficient in terms of an arbitrary quantity of
interest.

The only important choice in the problem is to choose a scale parameter for the prior distribution for the
coefficient of the separating variable. (Unbounded, symmetric, mean-zero priors should almost always work
fine.) This choice is essentially asking: How much pooling toward zero is appropriate? We know we need
some pooling—infinite estimates are not plausible. The question is how much.

Once the researcher chooses the prior (i.e., chooses the scale), she fits the model with MCMC just once and
uses the MCMC simulations to perform the inference. Except for the initial ML fit to determine the important
region of the prior distribution, the researcher fits the model just once. I am comfortable performing inference
in the usual way, without any correction. Though the researcher is using the data twice, the first usage
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only points the researcher to the important region of the prior distribution (i.e., other coefficients near their
MLEs).

Let me emphasize again that I would oppose evaluating the quality of the prior in terms of the reasonableness
of the posterior—I would view the inferences from this approach as biased. In my view, the posterior should
be computed just once (except when demonstrating the robustness of the conclusions to a range of prior
distributions).

Does Clarify adequately approximate the posterior distribution under separa-
tion?

In short, no.

In the paper, I note that Clarify provides a “poor” approximate to the posterior distribution under separation.
This is unusual. Clarify’s approach usually produces confidence intervals that closely correspond to the exact
posterior computed via MCMC. However, in the case of separation, the approximation of Clarify’s simulation
procedure to MCMC simulation is indeed quite poor.

I have included an example below to illustrate that separation “breaks” Clarify, at least in terms Clarify’s
ability to approximate the posterior distribution. In the figure below, notice that the correct posterior
calculated by MCMC suggests that much larger values of the coefficients are plausible than the Clarify
approximation suggests. (Though, as R1 notes, Clarify and the bootstrap produce similar confidence intervals.)

# load packages
library(MASS)
library(arm)
library(rstanarm)
library(dplyr)
library(tidyr)
library(magrittr)
library(ggplot2)

# set seed
set.seed(208579)

# create data
n <- 100 # sample size
x <- rbinom(n, size = 1, prob = 0.5) # single explanatory variable
y <- rbinom(n, size = 1, prob = plogis(-1 + 2*x)) # create overlapping outcome variable
y[x == 0] <- 0 # create quasi-complete separation

# approximate posterior using Clarify-like simulation
pml_fit <- bayesglm(y ~ x, family = binomial)
mu_hat <- coef(pml_fit)
Sigma_hat <- vcov(pml_fit)
clarify_sims <- mvrnorm(n = 1000, mu = mu_hat, Sigma = Sigma_hat) %>%

data.frame("clarify")

# calculate posterior exactly with MCMC
mcmc_fit <- stan_glm(y ~ x, family = binomial, prior = cauchy())
mcmc_sims <- as.matrix(mcmc_fit) %>%

data.frame("mcmc")

# combine simulation into single data.frame for ploting
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names(clarify_sims) <- names(mcmc_sims) <- c("b_cons", "b_x", "method")
df <- rbind(clarify_sims, mcmc_sims) %>%

gather(parameter, sim, -method)

# plot
ggplot(df, aes(x = sim, color = method, fill = method)) +

geom_density(alpha = 0.5) +
facet_wrap(~ parameter)
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Do the estimates of the coefficients for the non-separating explanatory variables
depend on the prior?

In short, not much.

The ML estimates of the coefficients for the non-separating explanatory variables are “roughly correct.”
However, the presence of separation makes a precise statement of the meaning difficult for two reasons. First,
separation itself is a post-data description. Secondly, if the the separating variable is correlated with the
other variables, then the estimator is somewhat biased. We know (or assume) that separation produces an
overestimate of the absolute value βs . If we have an over-estimate of βs and s is correlated with x, then the
estimate of βx will be biased. However, my assertion is that this bias is not too large and that all we need is
a rough estimate.

The simulation below verifies intuition that the bias is not large, but also confirms that the magnitude of the
bias is substantively negligible, even when separation is “severe” (true coefficient is large) and the correlation
between the separating and non-separating explanatory variable is large. That is, when (1) using a much more
informative prior than usual (i.e., scale parameter of 1 rather than 2.5) (2) with variables more correlated
than usual (rho = 0.84) and (3) much larger effects than researchers typically expect (βx = −11), the bias is
quite small. Even in this “worst case” scenario, the average estimate is about 0.38 while the true estimate is
about 0.5. For more typical correlations (i.e., about 0.48), the average estimate of βx never drops below about
0.44. For more typical effect sizes (i.e., about βs = −6), the average estimate of βx is always close to 0.5.

# load packages
library(arm)

# set seed
set.seed(208579)

# simulation parameters
n <- 500 # sample size
b_cons <- c(-1, 2, 4) # intercept
b_s <- c(-6, -9, -11) # coefficient for separating variable
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b_x <- 0.5 # coefficient for other variable
rho_star <- c(1, 2, 3) # parameter controlling the correlation between x and s

# note: (1 ~> 0.48, 2 ~> 0.74, 3 ~> 0.84)
prior_scale <- c(10, 2.5, 1)

# create explanatory variabls
s <- c(rep(0, n/2), rep(1, n/2)) # separating variable

# monte carlo simulation
n_sims <- 1000 # number of monte carlo simulations
hat_b_x <- array(NA, c(n_sims, length(rho_star), length(b_s), length(prior_scale)), # holder for coefficient estimates

dimnames = list(NULL,
paste("rho_star =", rho_star),
paste("b_s =", b_s),
paste("prior_scale =", prior_scale)))

pred_pr <- hat_b_x # holder for predicted probability estimates
for (i in 1:n_sims) { # loop to do monte carlo simulations

for (j in 1:length(rho_star)) {
for (k in 1:length(b_s)) {

for (m in 1:length(prior_scale)) {
x <- rnorm(n) + rho_star[j]*s # explanatory variable, correlated with s (rho about 0.44)
p <- plogis(b_cons[k] + b_s[k]*s + b_x*x) # probability of an event
y <- rbinom(n, 1, p) # simulate outcome variable
if (sum(y[s == 1]) == 0) { # only if separation occurs

mle <- bayesglm(y ~ s + x, family = binomial, # fit model
prior.scale = c(prior_scale[m], Inf), prior.df = 1,
prior.scale.for.intercept = 10, prior.df.for.intercept = 1)

hat_b_x[i, j, k, m] <- coef(mle)[3] # store coefficient estimate
pred_pr[i, j, k, m] <- predict(mle, # store predicted probability estimate for s = 0, x = 1

newdata = data.frame(s = 0, x = 1),
type = "response")

}
}

}
}

}

# calculate average estimate for each set of simulation parameters
round(apply(hat_b_x, c(2, 4, 3), mean, na.rm = TRUE), 2)

## , , b_s = -6
##
## prior_scale = 10 prior_scale = 2.5 prior_scale = 1
## rho_star = 1 0.51 0.49 0.50
## rho_star = 2 0.51 0.49 0.49
## rho_star = 3 0.51 0.49 0.50
##
## , , b_s = -9
##
## prior_scale = 10 prior_scale = 2.5 prior_scale = 1
## rho_star = 1 0.50 0.49 0.50
## rho_star = 2 0.49 0.48 0.50
## rho_star = 3 0.48 0.49 0.48
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##
## , , b_s = -11
##
## prior_scale = 10 prior_scale = 2.5 prior_scale = 1
## rho_star = 1 0.49 0.44 0.44
## rho_star = 2 0.40 0.39 0.39
## rho_star = 3 0.45 0.43 0.38

To further illustrate that the choice of prior matters less for the non-separating variables, I reproduced
Bell and Miller’s estimates and standard errors using MLE, Gelman’s suggested Cauchy prior, and Zorn’s
suggested Jeffreys’ prior. I plotted the coefficient estimates and asymptotic standard errors below. Notice
that the estimates and standard errors are essentially identical across the plots.

# load packages
library(ggplot2)

# load barrilleaux and rainey data
bm <- readr::read_csv("bm.csv")

# model formula
# set formula
f <- warl2 ~ onenukedyad + twonukedyad + logCapabilityRatio +

Ally + SmlDemocracy + SmlDependence + logDistance +
Contiguity + MajorPower + NIGOs

# fit models
m1 <- glm(f, data = bm, family = binomial) # mle
m2 <- arm::bayesglm(f, data = bm, family = binomial) # cauchy prior
m3 <- logistf::logistf(f, data = bm, family = binomial) # jeffreys' prior

m1_df <- data.frame(method = "mle",
coef = names(coef(m1)),
est = coef(m1),
se = sqrt(diag(vcov(m1))))

m2_df <- data.frame(method = "cauchy",
coef = names(coef(m2)),
est = coef(m2),
se = sqrt(diag(vcov(m2))))

m3_df <- data.frame(method = "jeffrey",
coef = names(coef(m3)),
est = coef(m3),
se = sqrt(diag(vcov(m3))))

df <- rbind(m1_df, m2_df, m3_df)

ggplot(df, aes(x = method, y = est, ymin = est - se, ymax = est + se)) +
geom_point() +
geom_errorbar(width = 0) +
facet_wrap(~ coef, scales = "free")
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