
The Average and SD in R
These notes explain the computation of the average and SD in R. For the underlying concepts, see chapter
3 of Freedman, Pisani, and Purves’ (2007) excellent textbook [Amazon].

The Basics: mean() and sd()
Calculating an average and standard deviation in R is straightforward. The mean() function calculates
the average and the sd() function calculates the standard deviation. However, both of these functions are
designed to work with vectors, not data frames, and so we must remember to use the data$variable syntax.

To see how this works, let’s load the nominate.rds and remind ourselves what variables we’re working with.
load data
nominate <- readRDS("data/nominate.rds")
note: make sure the file 'nominate.rds' is in the 'data' subdirectory
and your working directory is set appropriately.

quick look at data
tibble::glimpse(nominate)

Rows: 6,159
Columns: 6
$ congress <int> 100, 100, 100, 100, 100, 100, 100, 100, 100, 10~
$ state <fct> ALABAMA, ALABAMA, ALABAMA, ALABAMA, ALABAMA, AL~
$ congressional_district <int> 1, 2, 3, 4, 5, 6, 7, 1, 1, 2, 3, 4, 5, 1, 2, 3,~
$ party <fct> Republican, Republican, Democrat, Democrat, Dem~
$ name <fct> CALLAHAN, DICKINSON, NICHOLS B, BEVILL T, FLI~
$ ideology_score <dbl> 0.358, 0.349, -0.039, -0.203, -0.152, -0.065, -~

Then let’s calculate the average and standard deviation of the ideology_score variable.
calculate average
mean(nominate$ideology_score)

[1] 0.08695941
calculate standard deviation
sd(nominate$ideology_score)

[1] 0.4749944

Importantly, the SD that R calculates with sd() is not quite the same as the SD in the textbook.1 See Section

7 on p. 74 for more details. In short, the textbook uses the formula √ sum of squared deviations from mean
number of observations .

R uses the formula √ sum of squared deviations from mean
number of observations - 1 .

We can see this below:
create example numeric vector
x <- c(6, 3, 2, 7)

calculate number of observations
N <- length(x) # counts the number of elements in x

using FPP formula

1Freedman, David, Robert Pisani, and Roger Purves. 2007. Statistics. 4th ed. New York, NY: WW Norton. [Amazon].

1

https://amzn.to/3H9sbaO
https://amzn.to/3H9sbaO

deviations <- x - mean(x)
s <- deviations^2 # the "s" in r.m.s.
m <- sum(s)/N # the mean; the "m" in r.m.s.
sd <- sqrt(m) # the square root, the "r" in r.m.s.
print(sd) # this is the SD

[1] 2.061553
using R's formula
deviations <- x - mean(x) # same as above
s <- deviations^2 # same as above
m_plus <- sum(s)/(N - 1) # divide by N - 1 rather than N
sd_plus <- sqrt(m_plus) # same as above
print(sd_plus) # this is the SD+

[1] 2.380476
compute using sd()
sd(x) # same as R's formula above

[1] 2.380476
correct using formula on p. 75
cf <- sqrt((N - 1)/N) # conversion factor
cf*sd(x) # same as using FFP formula above

[1] 2.061553

An Aside on Data Frames

Remember that mean(ideology_score) does not work. It does not work because ideology_score is stored
inside a data frame. Therefore, as with all variables in data sets, we need to use the data$variable syntax.
If you find this confusing, you should think of a data frame as a box of vectors. The vectors in the box can
be different types (e.g., numeric, character), but they all have the same length (i.e., number of elements).
When you ask R to calculate mean(ideology_score), it looks around (in the “environment”) for an object
called ideology_score. However, it will not find ideology_score, because ideology_score is hidden in
the box (i.e., the data frame). In order to force R to look inside the box, you have to tell it what box to look
inside. nominate$ideology_score, then, means “the ideology_score vector in the nominate data set.”

It’s probably more interesting to look at an individual Congress, though, so let’s subset the data and take
the average and standard deviation of only the 100th Congress.
average and sd for the 100th congress
nominate100 <- subset(nominate, congress == 100) # create a new data frame w/ only the 100th congress
mean(nominate100$ideology_score) # calculate the average

[1] -0.04942369
sd(nominate100$ideology_score) # calculate the standard deviation

[1] 0.343292

Within an individual Congress, we can calculate the average and standard deviation for Republicans and
Democrats separately.

2

calculate average and sd for republicans in 100th congress
nominate100rep <- subset(nominate, (congress == 100) & (party == "Republican")) # subset to 100th congress and Rs
mean(nominate100rep$ideology_score) # calculate average

[1] 0.3141508
sd(nominate100rep$ideology_score) # calculate sd

[1] 0.1686674
calculate average and sd for democrats in 100th congress
nominate100dem <- subset(nominate, (congress == 100) & (party == "Democrat")) # subset to 100th congress and Rs
mean(nominate100dem$ideology_score) # calculate average

[1] -0.2997308
sd(nominate100dem$ideology_score) # calculate sd

[1] 0.1596674

For the 100th Congress, you can see that, on average, Democrats are more liberal than Republicans. Within
the parties, you can see a similar spread in the distributions. The histogram below shows the same pattern.
plot separate histograms for democrats and republicans for the 100th congress
library(ggplot2) #
ggplot(nominate100, aes(x = ideology_score)) + # data set: nominate100, aesthetics: x = ideology_score

geom_histogram() + # geometry: histogram
facet_wrap(~ party) # facets: create plots by party

Democrat Republican

−0.5 0.0 0.5 −0.5 0.0 0.5
0

10

20

30

ideology_score

co
un

t

In general, this is how we’ll want to use averages and standard deviations–calculating for distinct subgroups
(e.g., Republicans and Democrats) and comparing. Remember that the last step of the scientific method I
described is “comparisons.”

Moving Further: summarize() and group_by()
The dplyr package offers a two functions that, when combined, allow us to do this quite effectively.

group_by()

First, the group_by() function allows us to point out the interesting groups in our data frame. These are
the groups that you, the researcher, find interesting. In our case, the variable party defines the groups we
are interested in. The first argument to group_by() is the data set we would like to group. The second
argument to group_by() is the variable that we would like to group by. So group_by(nominate, party)
means “group the nominate data set by party.” One group will be Republicans, another group will be
Independents, and the remaining group will be Democrats.

3

load packages
library(dplyr) # for summarize() and group_by()

group the data set
nominate100_grouped <- group_by(nominate100, party)

summarize()

Grouped data frames are especially useful when combined with the summarize(). The summarize() function
calculates statistics by group.

summarize() creates a new data frame with several variables. There will be one variable for each grouping
variable. In the current example, we just have one: party. It will also create a variable for each statistic.

The first argument to the summarize() function is the grouped data set. The remaining arguments are
explicitly named. The name of the remaining arguments will be the variable names in the new data set. The
arguments are the calculations that you’d like to apply to each group.

The following example should make the logic clear.
calculate the mean and standard deviation for each party in nominate100
summarize(nominate100_grouped,

mean_ideology = mean(ideology_score),
sd_ideology = sd(ideology_score))

A tibble: 2 x 3
party mean_ideology sd_ideology
<fct> <dbl> <dbl>
1 Democrat -0.300 0.160
2 Republican 0.314 0.169

Multiple Grouping Factors

In the previous example, we grouped only by party and used data from only the 100th Congress. But with
group_by() and summarize() we can quickly do this for each party and each Congress.
calculate the mean and standard deviation for each party and congress in nominate
nominate_grouped <- group_by(nominate, party, congress) # group data by party *and* congress
summarize(nominate_grouped,

mean_ideology = mean(ideology_score), # calculate the mean for each group
sd_ideology = sd(ideology_score)) # calculate the standard deviation for each group

`summarise()` has grouped output by 'party'. You can override using the
`.groups` argument.

A tibble: 28 x 4
Groups: party [2]
party congress mean_ideology sd_ideology
<fct> <int> <dbl> <dbl>
1 Democrat 100 -0.300 0.160
2 Democrat 101 -0.302 0.162
3 Democrat 102 -0.302 0.163
4 Democrat 103 -0.314 0.157
5 Democrat 104 -0.338 0.148
6 Democrat 105 -0.346 0.136
7 Democrat 106 -0.344 0.137
8 Democrat 107 -0.350 0.133

4

9 Democrat 108 -0.349 0.129
10 Democrat 109 -0.359 0.124
i 18 more rows

This new data frame is much bigger, so there is a lot to look at. Here are some comparisons you might make:

1. The average ideology for Republicans across Congresses. Are Republicans getting more conservative,
more moderate, or staying about the same?

2. The average ideology for Democrats across Congresses. Are Democrats getting more liberal, more
moderate, or staying about the same?

3. The standard deviation of ideology for Republicans across Congresses. Are Republicans becoming more
ideological similar, dissimilar, or staying about the same?

4. The standard deviation of ideology for Democrats across Congresses. Are Democrats becoming more
ideological similar, dissimilar, or staying about the same?

Based on the output above, what would you say?

Plotting the Average and SD
It turns out that the table created by summarize() is a data frame. If we store this data frame as an object
(say, smry), then it’s easy to plot these data using ggplot2.
store summarize() data frame as an object
smry <- summarize(nominate_grouped,

mean_ideology = mean(ideology_score),
sd_ideology = sd(ideology_score))

`summarise()` has grouped output by 'party'. You can override using the
`.groups` argument.

I have in mind a plot where the x-axis represents the Congress (i.e., 100, 101, etc.) and the y-axis represents
the average (or standard deviation). I want one line for each party that are different colors.

To create this plot, we’ll use ggplot2. This means that we’ll take the same approach of supplying the data
and aesthetics and then adding the geometry.

In this case, we want to use the data frame smry. The aesthetics we want are x = congress, y =
mean_ideology (or y = sd_ideology), and color = party. The plot I have in mind is a line plot, so we’ll
add geom_line(), which simply connects the x-y values with a line.
load packages
library(ggplot2)

line plot of average
ggplot(smry, aes(x = congress, y = mean_ideology, color = party)) +
geom_line()

−0.25

0.00

0.25

0.50

0.75

100 105 110
congress

m
ea

n_
id

eo
lo

gy

party

Democrat

Republican

5

line plot of standard deviation
ggplot(smry, aes(x = congress, y = sd_ideology, color = party)) +
geom_line()

0.12

0.14

0.16

0.18

100 105 110
congress

sd
_i

de
ol

og
y

party

Democrat

Republican

This plot of averages and standard deviation makes it clear that polarization is happening for two reasons.

1. Republics are moving further to the right, on average.
2. Democrats are becoming more ideologically similar.

Both of these tendencies lead to less overlap in the distributions.

If we wanted, we could refine these ggplots in the usual ways. For completeness, I’ve include the entire script
necessary to re-create the figure.
load packages
library(dplyr)
library(ggplot2)

load data
nominate <- readRDS("data/nominate.rds")
note: make sure the file 'nominate.rds' is in the 'data' subdirectory
and your working directory is set appropriately.

group the data frame
nominate_grouped <- group_by(nominate, party, congress) # group data by party *and* congress

calculate average and sd for each group
smry <- summarize(nominate_grouped,

mean_ideology = mean(ideology_score),
sd_ideology = sd(ideology_score))

line plot of average
ggplot(smry, aes(x = congress, y = mean_ideology, color = party)) +
geom_line() +
labs(x = "Congress",

y = "Average Ideology Score",
color = "Party",
title = "Ideology of the Parties in Congress Across Time",
subtitle = "Republicans Are Shifting Right",
caption = "Data Source: DW-NOMINATE from voteview.com") +

theme_bw()

6

−0.25

0.00

0.25

0.50

0.75

100 105 110
Congress

A
ve

ra
ge

 Id
eo

lo
gy

 S
co

re

Party

Democrat

Republican

Republicans Are Shifting Right

Ideology of the Parties in Congress Across Time

Data Source: DW−NOMINATE from voteview.com

Review Exercises
1. In these notes, we’ve introduced several new functions: mean(), sd(), group_by(), summarize(), and

geom_line(). For each of these functions, answer the following questions:
a. What does the function do?
b. What arguments does the function usually take? Note that functions take many arguments, but

there are a few that we unusually use.
c. When would you use the function?
d. What package is the function in?

2. Suppose I create the object x using the code x <- c(1, 2, NA, 4). If I run mean(x) what will I get?
What about sd(x)? What is one way to solve the problem? Is it a good solution?

3. Sometimes we prefer to use the median as the measure of location of a distribution rather than the
average. We can easily calculate the median in R using median(), which works similarly to mean().
Re-create the final figure above using the median rather than the mean.

4. Similarly, we sometimes use the inter-quartile range (IQR, the difference between the 75th and 25th
percentile) as a measure of dispersion rather than the SD. Re-create the final figure above using the
IQR rather than the mean.

5. Load the state-legislators data. You choose the filetype. Group the data set by year, state, and
party. Using that grouped data, create a line plot, much like the final figure above, but with faceting
by state. (Hint: This will create one big figure with 50 line plots–one for each state.) What interesting
patterns do you see?

References
For more information, I recommend the following books and resources.

• Freedman, David, Robert Pisani, and Roger Purves. 2007. Statistics. 4th ed. New York, NY: WW
Norton. [Amazon]. This book offers an excellent discussion of the foundational ideas of statistics, like
histograms, average, SD, least squares, confidence intervals, and hypothesis testing.

• Llaudet, Elena, and Kosuke Imai. 2022. Data Analysis for Social Science. Princeton, NJ: Princeton
University Press. [Amazon]. This book offers an easily accessible discussion of both the concepts and
computation of basic statistics.

• Wickham, Hadley, Mine Cetinkaya-Rundel, and Garrett Grolemund. 2023. R for Data Science. 2nd
ed. Sebastopol, CA: O’Reilly Media. [Amazon] and [website]. This book covers the basics of data
wrangling in R using the tidyverse.

• Wickham, Hadley. 2016. ggplot2. 2nd ed. Use R! Springer International Publishing. [Amazon (2nd)]
and [website (early 3rd)]. This book covers the basics of plotting with ggplot2.

7

https://amzn.to/3H9sbaO
https://amzn.to/41IZ7k1
https://amzn.to/3TW5hLs
https://r4ds.hadley.nz
https://amzn.to/3vgIWOv
https://ggplot2-book.org

	The Average and SD in R
	The Basics: mean() and sd()
	An Aside on Data Frames

	Moving Further: summarize() and group_by()
	group_by()
	summarize()
	Multiple Grouping Factors

	Plotting the Average and SD
	Review Exercises
	References

